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Abstract

A multiple sensor system is considered under binary hypothesis environments.

All sensors are assumed independent, and the observed data is also independent.

Received data is quantized and then send to the fusion center to determine whether a

target is present. The Sequential Probability Ratio Test is employed in the fusion

center. The objective to find an optimal system by minimizing the expected number

of observations. Both two-level and four-level quantizer are used in the process of

finding the optimal system. Numerical evaluations are made to find the quantizer

which minimize the expected number of observations that are required to decide the

presence of the target. System simulations are also performed to confirm the results.
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CHAPTER 1

Introduction

1.1. Literature Review and Goals

The Sequential Probability Ratio Test (SPRT) was first developed by Wald. In

[1], he presented the general theory of the sequential analysis and SPRT. Over the

years, there are many books have been written about the sequential analysis. In par-

ticular, Dr. Siegmund has discussed this topic in a very precise and condensed form

in his book [2].

In [3], sequential detection based on simple quantization has been analyzed. In

this paper, the classical ruin problem in probability theory was applied to analyze the

sequential dead-zone limiter detector and the sequential four-level detector. How-

ever, the author did not study the the effects of the quantization level of a quantizer

on the sequential system, and his results were only applied to a single sensor. Chair,

Hoballah and Varshney [4] applied the sequential detection theory to decentralized

system where multisensors were used. A global decision was made based on the

local decision of each sensor. Local decision rules were given by the likelihood ratio

test (LRT), and the authors used the Neyman-Pearson approach to derive the optimal

rules for each detector.

In our research, we also considered the problem of the distributed sequential

detection system. However, instead of using LRT at each sensor as mentioned in

Chair, Hoballah, and Varshney's paper, we simply quantize the observations into m-

...... .



level and sent them to the fusion center, the fusion center employs a sequential pio-

cess that has the option to make a final decision on whether or not to continue the

process by taking one more observation from each sensor. Our goals were to obuin

the analytical expression on the expected number of samples that are required to

make a decision in terms of the probabilities associated with the quantized observa-

tions, and to investigate the effects of different quantizers on the expected number.

We are particularly interested in the systems which have two-level and four-level

quantizers. The performances are compared through numerical evaluations and Sys-

tem simulations.

1.2. Overview of Chapters

Chapter 1 contains a literature review in which some of the important papers are

discussed. It also describes the goals of the study, and the general overview of each

chapter is given. The conditions and general assumptions are also mentioned.

A discussion on a two-sensor-system with m-level quantizer is presented in

chapter 2. The sequential probability rato test is stated for the system. The expres-

sion of the expected number of observations is also determined, and G function is

defined in terms of expected number of observations.

In chapter 3, the emphasis is on the two-sensor system with two-level quantizer.

By assuming that the distribution function of the observations has a double exponen-

tial character, the numerical evaluations are performed on the expected number of the

system for various quantizers, and the optimal systems are found. the effects of the

parameters of the double exponential on the system are also considered. The results

2



are plotted, and the evaluation program is in appendix A.

Work similar to that done in the previous chapter is done for the system with

four-level quantizer in chapter 4. The analytical expression as well as the numerical

evaluation of the expected number are performed for different four-level quantizers

and parameters of the double exponential distribution function. The data is plotted in

the end of the chapter, and the program of this study is in appendix B.

The results from chapter 3 and chapter 4 are presented in chapter 5. Each

system's results are compared to the other results. The detailed discussion of each

system is also given in this chapter.

In chapter 6, the optimal quantizers that are found in previous chapters are used

to simulate the two-sensor system. The results are listed and plotted. In this chapter,

the derivation of the random environment of double exponential is also discussed.

The results are shown in the end of the chapter, and the simulation program is in

appendix C.

In chapter 7, final comments and conclusions are made on the study.

1.3. Environment

The environment consists two hypothesis H, and H0 . H, shows that a target is

present, and Ho indicates that no target is present.

1.4. Assumption

We assume that the data observed at a sensor is independent and identical distri-

buted. It is also assumed that the observations of one sensor are independent from



the others.

1.5. Advantages of the Sequential Test

The sequential test is considered optimal in the sense that it minimizes the

expected sample size both under H1 and Ho among all tests have no larger error pro-

bability with independent and identical distributed observation [2]. Its average sam-

ple size is smaller than the fixed sample size required by the Neyman-Pearson test for

the same performance.
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CHAPTER 2

General Analysis of a Two-Sensor System

2.1. The Model and Configuration

2.1.1. Decision-Making at the Individual Sensor

There are two hypotheses H, and Io. At each sensor, the hypotheses are

presented by the probability density functions. The sensor quantizes the incoming

data into m-levels. The m-level quantizer shown in Figure 2.1 is precalculated

according to the optimal rule which will be derived in later chapters. As shown in

Figure 2.2, each quantized level is associated with two conditional probabilities. If

Xi falls between ak and ak- 1 , the probabilities associate with Xi are PK1 and PKO

Figure 2.3 shows the quantized regions under hypotheses H, and H0 of sensor two.

The total number of bits that is transmitted to the fusion center depends on the

number of the quantized level. For a four-level quantizcr, it requires two bits of data.

2.1.2. Decision-Making at the Fusion Center

At the fusion center, Sequential Probability Ratio Test (SPRT) is employed.

The decision is made by comparing the two predetermined thresholdes A and B

where A is less than B. The fusion center will request more information from the

sensors if it cannot decide whether the target is present

5
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Figure 2.1 Model of rn-level Quantizer



Quantized Regions for Sensor 1

HI HO

k-1 k k+.

Area Pk1

Area PkO

Figure 2.2 The m-level Quantized Probability Space of Sensor 1
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Quantized Region for Sensor 2

HI HO

r r r
. . . k-1 k k+1 . . .

Area q :

Area :qko

Figure 2.3 The rn-level Quantized Probability Spac of Sensor 2

2.1-3. The Overall Process of the Model

As mentioned in chapter 1, sensors are independent each other. The incoming

signals are first quantized into m-levels, and then send to the fusion center. Depend-

ing on whether the likelihood ratio(LR) at the fusion center is greater than B or less

than A, the final decision is made. A target is either detected if LR is greater than B,

or the target is not present if LR is less than A. If the LR is laid in between the thres-

holds A and B, the center requests each sensor to send one more quantized observa-

tion as shown in Figure 2.4.

8



XK Y

Sensor I QQ2 Sensor 2

quantizer 1 quantizer 2

Xk . Yk

I..............................

* Fusion Center

* Sequential Test]

Request .... ?1oO
one more observation

Figure 2.4 Model of the Sequential Detection Systemi
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2.2. Definition of the Sequential Probability Ratio Test

2.2.1. General Definition of SPRT

If x1 ,x 2 ... is a sequence of random variables with join density function fn, and

there are two hypotheses H, and HO such that:

Ho: fn=fo(xl,x2,....,Xn) (2.2.1)

H1 : fn = fin(xl,x 2, . -. Xn) (2.2.2)

In is defined as likelihood ratio:

In = In(XI, X2 .... , Xn)

=fln(Xi,X2, - • • , Xn)(2.3
fn(xl,x2, " .. , Xn)(.23

Let the thresholds A and B are chosen such that 0 <A < B < -, and start observing

data x1 ,x2 ,... , sequentially until the random time N which is the first n such that

either In -> B, or 1n _< A. If In > B, then H1 is selected, and if In _< A, then Ho is

selected. This can be expressed mathematically as following:

first n > 1 such that In 9 (A,B)

N 0 if In 6 (A, B) for all n > 1 (2.2.4)

Stop sampling at the time N and if N < 0

Reject H, ifl n >_ B

Accept Ho if In < A

2.2.2. Calculation of the Thresholds

Thresholds A and B were calculated in terms of the error probabilities of first

and second kind (cc and 3, respectively) in [1].

10



For given a and 3 where

CC= PO(IN B) (2.2.5)

3 = P1 (IN 5 A) (2.2.6)

A and B can be expressed as following:

A = I-P (2.2.7)
a

B = P (2.2.8)
1-ca

2.3. SPRT for Two Distributed Sensors

2.3.1. Definition of the LR

Extending the definition of the LR in (2.2.3) to two sensors, the LR of this sys-

tem can be written as:

In= fin(Xl ,x2, ... - xn; Yl ,Y2, -... ,Yn)(231
f~n(xl ,x2 ..... xn; Yl ,Y2, • -•, Yn)

where f1n(X1,X2 ... .,Xn; Y1,Y2,.-. ,y,) and f~n(Xl,x 2 , .... Xn; YI,Y2,.- ,Yn) are

join density function of observed random sequence x1 ,x2 .... , xn from sensor 1 and

YiY2.... , Yn from sensor 2 under hypotheses H1 and Ho respectively (see Figure

2.3).

Applyng the assumption that the observations of one sensor are independent

from the other, the above equation (2.3.1) can be re-written as:

Ifl = f%(x 1,x2 .... , xn )fln(Y1 ,Y2 ... , Yn) (2.3.2)fon (xl,x29 .. xn)fOn (Y1 ,Y2, ....- yn)

Furthermore, if the individual observation of each sensor is independently distributed,

(2.3.2) becomes:

11



nfln(Xk)fln(Yk)In = rI'2..3
k=l fOn(Xk)fOn(Yk) (2.3.3)

Taking log on both sides to arrive at the log likelihood ratio:

I n fin(Xk)fln(yk)
Ogn =log (2.3.4)

2.3.2. SPRT

Using the LR that is defined in the previous section, the SPRT can be stated as

follows:

Sampling the random sequence x1 ,x2 ,.., and Yl,Y2,... sequentially until the ran-

dom time N, such that logIN is greater or equal to b, or less than and equal to a. The

hypothesis H, is accepted if loglN 2t b and the hypothesis HO is accepted if logiN S a,

where

a = logA'

b = logB'

A' and B' will be derived in the next section.

2.3.3. Calculation of the Thresholds A' and B'

As defined in equation (2.2.5), a is the error probability of first kind, and

a= Prob ( decide H1 I Ho)

= Prob (stop at n and decide H1 I Ho)

= Po(N = n, In B') (2.3.6)
n=1

Let Bn  be the subset of n-dimensional space where

A' < lk(X, .. xk;yl, • Yk) < B' for every k < n, and

12



In(X..., Xn;Yl, .... Yn) >- B'. Hence, the set

(N=n, 1.>B') = {(xl, .. ,xn;yl,. .-. ,Yn)r Bn}.

Let An  be the subset of n-dimensional space where

A' <In(xl ... Xk;Yl .... Yk) <B' for every k < n and

ln(xl, ...., Xn;Yl1,... ,Yn) A'. Hence the set

{ N=n, In5 <A'})= {(x1, ... xn;yl,.. ,Yn) 6 An)-

Now the definition in equation (2.3.6)

(X= f fon(xl,..., -xn,Yl,..., -Yn)dXl ... dxndyl ... dyn
n--l Xl ... xn,Yl,.....yneBn

n~lftf
00

Using the condition that In > B',

I fi ln(xl, ... ,Xn)fln(Yl, ... ,Yn)dxl ... dxndy1 ... dyn

B' n=1Bn

1 "
1--P, {N =n, In>-- B' )

B" n--

-TProb (decide H, I H1
B'

- (1 - Prob( decide Ho I H1 )
B'

(2.3.8)
B'

Bly the same method,

13



=Probf decideHo 1 Hj)

= jProb{ stop at n and decide Ho I HI)
n=1

= j(PIN=n. In :A')
.=l

= f fln(xl, "'" ,Xn,Yl,.. . ,yn)dxl ... dxndyl..-dyn
nI Xl .... xnyl.....yneAn

00

I f fin(Xl,. . ,xn)fln(YI .. ,Yn)dXl"" dxndyl ... dyn.
rr-IA n

< A'j f fn(xi,..- ,xn)fn(Y1,.-., yn)dxl ." dxndy "" "dYn
n=IA n

=A' fn(l, ..., Xn,yi ... ,yn)dxl ." dxndyi "" dyn
nr-IAn

= A" PO ( N = n, 1n -<A')
n=l

= A'Prob{ decide HO I HO)

= A'(1 - Prob( decide H, I HD))

=(I-ca)A'. (2.3.9)

The a and 1 can be approximated. Since the equations (2.3.8) and (2.3.9) have ine-

qualities only because In does not have to reach the boundaries A' and B' exactly

when it first leave (A',B'), we can ignore this discrepency and treat (2.3.8) and

(2.3.9) as equalities. Then

Cc = 1-P (2.3.10)
B'

14



3 = A'(1 - ) (2.3.11)

2-3.4. Derive the Expected Value of N ( Ei { N)

To derive Ei ( N }, it is necessary to look at the equation (2.3.4). By taking the

expected value on both sides of the equation, it becomes:
F-4{_ I fln(Xk)fln(yk)'1

Eilog In = log / (2.4.1)

where Ei { } is the conditional expectation under hypothses Hi, and i = 0, 1.

Wald's identity [1] said that if V1 ,V2 ,... is i.i.d with mean value g± = EV1 , Let M

be any integer valued random variable such that (M = n) is an event determined by

conditions on V1 ,V2 .... ,Vn for all n=1,2,..., and assume that EM<-, then

M
E( FVk) = gEM.

From (2.4.1), we can define Vk as:

fin(Xk)fln(Yk)(24)Vk = 1og-f1n (Xk)f~n (Yk) (2.4.2)

Vk = lof'n(X(Xkffn(YY)

Since fil(Xk),lfn(Yk),fJ0n(Xk), and fon(yk) are al! i.i.d, log fin(Xk)fl(Yk) is also i.i.d.
fOn(xk)fOn(Yk)

Using the definition of Wald's identity on the right side of the equation (2.4.1), it

gives

Eilog In = iEi( N) =EiV1 Ei{ N} (2.4.3)
On the other hand, the left side of the equation (2.4.1) can also be approximated as a

two-valued random variable taking on the values a and b by the same reasoning used

to derive (2.3.10) and (2.3.11).

15



Elog I = aPi(In - A') + bP, (2.4.4)

After applying equations (2.3.10) and (2.3.11), and doing some simplifications, the

equation (2.4.4) can be re-written as:

E01ogln = a(1 - a) + b 1 -

B'

l-A' B'-1
I - A B' - I

= a(1 - ) + b B A

B' - A' B"

a(B' - 1) + b(1 - A') (2.4.5)

B - A'

and

E1Logl n =aA'(1 - a) + b(1 -3)

aA'(B' - 1) + bB'(1 -A') (2.4.6)
B' - A'

By substitution, equation (2.4.3) can be written as:

E1 N = E1 (V 1 ) aA'(B' - 1) + bB'(1 - A') (2.4.7)B/ - A 247

EON = E01 (V 1 ) a(B' - 1) + b(1 - A') (2.4.8)

(B' - A')

2.4. Evaluate Ei (NI Under Quantization

As mentioned in section 2.1, the system described here utilizes a quantizer at

each sensor to quantize the received signals. Assuming a m-level quantizer is used,

thus the space is divided into m intervals. At the jth interval of sensor 1, the're are

two conditional probabilities associated with it, namely P(j I H0 ) and P(j I HI). The

general conditional probability of both sensors are defined below:
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For sensor 1: P(xl =j I H1 ) = pjl (2.5.1)

P(xl =j I Ho) = pjo (2.5.2)

For sensor 2: P(y1 = 1 I HI) = qlj (2.5.3)

P(y1 =1 I Ho) = qo (2.5.4)

where I, j = 1,2,...,m. Using these definitions in (2.5.1), (2.5.2), (2.5.3), and (2.5.4),

the equation (2.4.2) for V1 can be re-written as follows:

V, = log Pjq (2.5.5)
pjOq1O

Thus Ei {V1 ) becomes

E{V1 ) =Ei{log PjIql
PjoOqo

= _ P(x, =j, y = 1 I Hi)log p
j  qll

JPjo qlO

=ZIP( x, =j I hi)P(yl = 11 Hi) log pjjq
j I pjOq1O

= EEpqjilog'p-' -- (2.5.6)
j I pjo,.bo

where i = 1,0; j,lE (1....m) by inoking appropriate independence assumptions.

If the above equation is substituted into (2.4.7) and (2.4.8), the conditional

expectation.of N can be expressed as:

_ aA'(B'- 1) + bB'(1 -A') p log pjl l

- j I Pjoq1o

EON = a(B' - 1) + b(1 - A') (Z~Pjoqjolog pjjq ((BE-A)oNbor (2.5.8)(B' - A') j I IjjOl
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2.4.1. Definition of the G Function

In the previous section, E1N and E0 N have been evaluated. In order to find

optimal solution for the entire system, we first defined a function G,

G-- EN.
i=0. 1

Now we express the G function in terms of E1 N and EON:

* =_ aA'(B' - 1) + bB'(1 - A') (Yp.jiq I log pjqj)
B' - A' j" I PjoqOo

* + a(B' - 1) + b(1 - A") (Ypollgpjlqj,(.59G+...' ( )Pj 0 ql0 log q' ) (2.5.9)

(B' -A) j I pjOljO

If (x and 3 are given, then A' and B' are known from equations (2.3.8) and

(2.3.9). The G function only depend on the probability of quantization levels. Thus,

to have an optimal system, one must to find the optimal quantizers for both sensors

that will minimize the equation G.

In next chapter, we will study the effect of the two-level quantizer on the sys-

tem.



CHAPTER 3

Analysis of a Two-Sensor System with Two-level Quantizer

3.1. The Model and Configuration

The system that is analyzed here is closely related to the one in chapter two.

However, in chapter two, the signals are quantized into m-level at each sensor. The

main concern in this chapter is to study the two-level quantizer system both theoreti-

cally and numerically.

3.1.1. The Model of Sensor

Since sensor 1 and sensor 2 are identically process the incoming data, it is rea-

sonable to choose an arbitrary sensor as an example. Taking a look at sensor 1,

shown in the figure 3.1, a two-level quantizer with thresholds T1 divides both proba-

bility functions f, 1 ( ) and f01 ( ) into two regions. The received signal Xk is quantized

to 1 if it falls below the threshold T1 , and it is quantized to 2 otherwise. For the kth

signal, the conditional probabilities associate with each quantized level are listed

below:

For sensor 1:

k
P21 = P(Xk is above the threshold T, I Hj) = P(Xk = 2 1 HI) (3.1.1)
PkI = P(Xk is below the threshold T, I HI) = P(Xk = I I HI) (3.1.2)

P20 = P(Xk is above the threshold T1 I Ho) = P(xk = 2 1 H0) (3.1.3)

Pl10 = P(Xk is below the threshold T, I Ho) = P(Xk = I I Ho) (3.1.4)
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Two-level Quantizer System

HO Hi

Sensor 1

HO HI

Sensor 2

T2 q2 0

Figure 3.1 Quantized Probability Space of Two-level Quantizer System

For sensor 2:
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k= P(Yk is above the threshold I 2 I H1) = P(Yk =2 H1 ) (3.1.5)
q~l = P( Yk is be the threshold T2 I HI ) = P(Yk = 21 IHl ) (3.1.5)

kq 1 = P(Yk is below the threshold T 2 I HI) =P(yk=I 1HI) (3.1.6)

kq 20 = P( Yk is above the threshold T2 I Ho) = P(yk = 2 1 Ho) (3.1.7)

qlo = P(Yk is below the threshold T2 I Ho)= P(Yk = 11 Ho) (3.1.8)

3.2. Evaluate the Expected Value of N (Ei [ N))

The general expression of Ei (N} has been evaluated in chapter 2.

To derive the equation of Ei{N) for the system with two-level quantizer, one must

find E { V1 ) first. Using the probabilities defined in the last section, the equation

(2.5.6) can be expanded as:

E"V i og Pjlqn

j 1 pjoqlo

Pl__ll P11q21
= pliqllog + piq2 jilog

Ploqlo Ploq2o

P21q1l ,p 2 1q21
+ P2iqlilog + P2iq 2ilog P1oq2 l (3.2.1)P2oq2o P2oq2o

where

Pli = Pli;

P2i = p2;

qli = qii;

q2i = q2i;

and i = 0, 1. After some simplifications,

El J{V 1 =p2ilog P2Pl + q2 I q2oqll Ploqo (3.2.2)
P21PIO q21q10 p + q(

Eo(V, }p 2oIog +q2olog +log (3.2.3)
P21 N O q21 q1 0  p1 1 q 1
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Then the E, (N) can be expressed as follows:

El (N}= aA'(B'- 1) + b(B'- A) [P21log P20Pl + q21 0lg q2oq
B11-1Ag P21PIO q2j qxo

-1

+ log (3.2.4)

Eo (N) = a(B'- 1) + b(1 - A){ 20lo P20P11 + q2olog q2oqjj

B'- A" P21PIO q21 q10

• Ploqlo-1

+ log Poqljo (3.2.5)

3.2.1. An Alternative to Derive Ei (N)

In the case of two-level quantizer, if the signal is quantized into -1 or 1 depend-

ing on whether it falls below or above the threshold T1 , then the signal is an antipodal

signal. Let's define

Sn = xi + x 2 + + xn for sensor 1 (3.2.6)

Sn = Y1 + Y2 + + Yn for sensor 2 (3.2.7)
Notice here that (Sn) is a case of random walk. If assuming ai is the number of l's

among n signals, then n - ai is the number of -i 's,

Sn = a, - (n - a,) (3.2.8)

Sn = a2 - (n - a2 ) (3.2.9)

Now expressing ai and n - ai in terms of n, Sn, and Sn:

a 2 = (3.2.10)2

n - S

n-a = 2 (3.2.11)
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n + Sn (3.2.12)
a2 = 2

n - Sn (3.2.13)

n - a2 - 2

In the section 3.1, it was mentioned that an incoming signal is quantized into 1

and 2. However, no matter what value we assign to the quantization level, the proba-

bility that associates with it is the same. Thus

P[x 1 = 1 I HO) = P2O (3.2.14)

P{xj = -1 I Ho) = Plo (3.2.15)

P(x 1 = 1 I H, ) = p 21  (3.2.16)

P(x 1 =-1 I H, ) = pll (3.2.17)

P(y 1 = 1 I HO) = q20  (3.2.18)

P(yj =-1 I HO) = q10  (3.2.19)

P(yj = 1 1 HI) = q21  (3.2.20)

P(yj =-1 I HI} = q1 j. (3.2.21)

The LR becomes

In fl (Xl ,X2, ....- Xn)fl (Yl ,Y2 ....- , Yn)

f0(xl ,X2, • • • ,xn)f0o(Yl ,Y2 .... 9 Yn)

[P{xl = 1 I H, }]a, [P{x1 = -1 I H, )In-' [P(y 1 = 1 I H1 a2[P{y1 =-1 I H1 }]n-a2

[P(xl = I I o)]al [p(x =1 I H) }]n-ap [P(y = 1 i Ho)]a2 [pyl =-1 I Ho)] n-a,

n+sn ,n-sn D+i n-Sn

[P21] 2 [Pi1] 2 [q21] 2 [q11] 2
= .+. s .+,, .s,,(3.2.22)

[P201 2 [plol 2 [q20] 2 [ql0 2

Taking logrithm on both sides of the equation (3.2.22),
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loglIn log 1 o + logog1 + n - Sn ll

2 P20 2 lo 2 q2 2 log-
And using the definition of expectation and Wald's identity,

E (log1n ) = -l[(Ein + EinEixl)log2 + (Fn - EinEixl)log-P1
2 P20 Plo

+ (Ein + EinEjy l )iog-S1 + (Ein - EinEyl )log ql- (3.2.23)O qlo

Since Elx, = 2 P21 - 1, Ely1 = 2q21 - 1, Eox, = 2 p2o - 1, and Eoyl = 2q20 - 1,

E1 {N) and Eo {N) can be simplified to exactly the equations (3.2.4) and (3.2.5).

This gives us an interesting thought that there is more than one approach to a

problem. In this case, we can think that the two-level quantization system can be

considered as a random walk problem.

3.2.2. The G Function

Utilizing the equations derived in the last section, the G function is expressed by

simple substitution.

G=E 1 N+E 0 N

E l aA'(B' - 1) + bB'(1 - A') + E {VI ) a(B' - 1) + b(1 - A')(3B' -A' B'-A' (3.3.1)

where A' and B' are defined in chapter 2, and E1 (V1 ) and Eo(V 1 ) are shown in

(3.2.4) and (3.2.5).

3.3. Minimization of G Under the Double Exponential Assumption

By applying the double exponential distribution to the G function, one can show

how the system performs numerically and what the optimal system will be. The rea-

son that a double exponential distribution function is chosen is that it is easy to
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manipulate.

3.3.1. Probability Density Function

For sensor 1:

H1: f, (X) = --- eI Ix-12, (3.5.1)

H0 : f0(X) =---e-A lIX - i l  (3.5.2)
2

For sensor 2:

2

Ho: fo(Y) = X2 -e A1Y-t211 (3.5.4)
2

3.3.2. The Sequential Probability Ratio Test

The log LR is defined in (2.3.4). By applying it to the two-level quantizer case,

n fl (Xk)fl (YkO
log In log

- fo (Xk)fO (Yk)

= slog Pj-ql. (3.5.5)
k=1 PjOqlO

where j, = 1,2.

Now, the two random sequence x1 ,x2,... and YiY2, ... are sampled sequentially

until the random time N where N is the first n that log In is not between a and b. At

the time N,

Accept H1  if log In -b,
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Accept H0  if log I, < a.

Since a and 0 are given, and they are defined in (2.3.6) and (2.3.9), then

a = logA'

= log (3.5.6)

b = logB'

= log - P. (3.5.7)
a

3.3.3. Calculation on G function

In order to calculate the function G, it is easier to evaluate E 1 (N) and E0 (N)

first. From (3.2.4) and (3.2.5), E, (N) and E1 (N) are derived. By applying the dou-

ble exponential functions,

E l {N) aA'(B' - 1) + b(B' - A') P2oPII q2 oq1 I I Poq_ -

aA'(B' - 1) + b(B' - A') j91 .eAI x2 l 2j eBf A-L 1 x log

l2 2

T2X:),2 -X2, Y - 9211fl ¢ ),,2Y -7. y- I

+lg T22(-.2.8

*+ e-' 2 Y -AnIlog 2T_2

T222X2 e-),21 y-i22 TX e-),Y21T2T 2 Y-2

* logT T2, (3.2.8)

XT 1 -9 2 -).2 f Y -P,22 I

2
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Eo [N) = a(B' - 1) + b(1 - A') , P2oPI I .+ qoqlog Pjoqo"B' -A' ologP'2Plo+ q2°iog q1l--- + log P JIq
B'f - AP P21PIO jq pqj

f 2 e 
- g l - ' l  f -1 e - .l - l ,

a(B'-l)+b(1-A') -I -X - , " T 2B- B - A' _ Tj 2. -X, r

LXT 2 2u

T2

log 2 ~ M2 IJX2e4-21 y -i*22I

X2 e -X421Y -921Jx12 e-%21 Y21

+ X 2 e-X21 Y - 1211 log

+12 2 21Y-4,221 f I'!2 -X21 Y-9211

Tf T2 -1

i2 2

+ log %X T2 (3.2.9)
J -1 -L, 121 2 e-X2l Y-1221

Then G = E1 (N) + Eo (N) can be calculated. Below are the list of calculated

probabilities of all quantized levels for sensor 1:

If T1 > -12,

2,= 1 Xi 1x I x-912 i1 _L-'I(T1 -1L,2)

TI )-1 e-X11I x- 91l21  
-l e-xl (Tl - 92)

Pil1= f c 2l-

P20 eie = -e

T.2 2iXI (Tl
P T = I I I = 1 1 -LI(T - l1)

If II < T1 < p. 12 ,
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1 -l(T - 12)P21 = I- --e
2

1 - i(Ti- 2)

P11 LeL

I -XI(T -±ij)
P20 =

Plo = 1 - eI)
2

If T1 <B±1,

1 -X1(Tj-. 12)

P21 = 1 - -e
2

1 -) 1(T1-~ 2

P l = - e -.12)

2
1 -X1(T1 -± 11

P2o = I ---e
2

Pio = le-effTi -pi 
)

2

For sensor 2, the probabilities of quantized level are similar to those in sensor 1.

If T2 > g22,

x X2 1 -) 2 (T2 -. 22)

q1=T2 X2 e-X21 Y-22 I l -X2(T 2 - 1122 )q2 = 1- e - = -e

T2

q1 =f2 e-X2 1 y- ±2 t 1 -X2 (T2 -- 21)

-2 2 2

T2  X2  -X.21Y-M21Ii 1 _-2(T2 -21)

q1 =I ___ = -c

If 921 <T 2 -< 922,
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1 = -- 2(T2 -L22)q2 1 =1 - -e
2

1e -- 2(T2-22)
=

1 -X2 (T2 - ,2 1)q2o = -
2

1 -X.2 (T 2 -± 2 1)
qlo = 1 -

If T 2 < .121,

1 -;2(T 2 - 922 )q21 = 1- -e
2

1 -- 2(T2 -9i22 )

1 -X2(T2 -x 21)q20 = I--kMI
2

1 .-X2(T2 -. 21)
q10 = e4

2

3.4. Numerical Evaluation of G

The optimal sequential system that is studied here is defined as having the

minimum amount of data needed to determine whether the target is present under the

hypotheses H1 and Ho. Since G is the sum of the conditional expectation of the total

number of observation N, the expected N under both hypotheses will be minimized if

the minimum of G is found. Thus the purpose of the numerical evaluation is to find

the best quantizers for both sensors which minimizes the G function.

During the evaluation, different parameters such as g12, 1, 1-21 , i-I22, at, and f3

are used to determine the effect on the system. The values of X1 and X2 remain the

same throughout the study, and X1 = 0.25 and X2 = 0.125. By varing Tt and T2 , the

minimum G is found.
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Figure 3.2 shows the G function with respect to T2 and T1. The means used

here are symmetric about the y-axis, and g, = -1, 912 = 1, g2l = -2, and 9 22 = 2.

The error probabilities a = 1 = 0.01

As it shown, the G function is at its minimum when the both T, and T2 of the quan-

tizers are equal to zero.

If the means of the density functions is kept the same, and the error probabilities

increase such that a = 03 = 0.05, the G is shown in Figure 3.3. The plot in figure 3.4

gives the relation between G, TI, and T2 with ac = 0.01 and f3 = 0.05, while the means

are still as same as in the previouse figures.

In Figure 3.5, the characteristic of G with means that are not symmetrical about

the y-axis is studied. The means of the density functions are

g, I= -2, 1912 1- , 1221 = -3, 1222 = 2, and the error probabilities a = 0.01 and

13 = 0.05. From this figure, it is clear that the optimal quantizer has its quantized level

selected such that it is in the center of the mean.

Figure 3.6 gives another perspective when the 11 = - 3, 912 = 3,

P221 = -5, 1.22 = 5, a - 0.05, and 13 = 0.01. The optimal quantized level is not in thr

center of means, T1 =-0.1, T2 = -0.2. Again in Figure 3.7 shows the same conclu-

sion with a different set of error probabilities, a = 0.01, 13 0.05. The G is minimum

when T1 = 0.3 and T, = 0.1.
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CHAPTER 4

Analysis of a Two-Sensor System with Four-level Quantizer

4.1. The Model and Configuration

The process of this sequential detection system is the same as in chapter 2 and

chapter 3. The two independent sensors send quantized observations to the fusion

center which employs a sequential detection scheme to determine whether a signal is

present or not.

The only difference is that the sensors use four-level quantizers instead of two-

level ones. The expected number of data will be reduced, since the data from the

four-level quantizer contain more information than the data from the two-level quan-

tizer.

4.1.1. The Model of Sensor

As shown in Figure 4.1, each quantizer consists of two variables, namely Ti and

Di where i = 1,2. It divides the probability space into four regions. These are

(--c, Ti - Di], (Ti - Di, Ti], (Ti, Ti + Di], and (Ti + Di, -cc). After the sensor

receives a signal, depending on which region it falls in, the received data is quantized

to 1, 2, 3, or 4. Then this quantized value is sent to the fusion center for processing.

Below are the list of probabilities associated with each quantized level:

For sensor 1:

37



Four-level Quantizer System

1 ~2 3 4

Sensor 1

Tlj-D T1  j4-D I

1 2 3 4
Sensor 2

T2-D 2 T2 T2 +D 2

Figure 4.1 Four-level Quantized Probability Space

P4 1 =P(X e (T + DI, +-)IHj) = P(x = 4 1HI)(4.)

P3 1 P(XI r=(TI, T, +D, ] IHI)P(x = 3 1 H) (4.1.2)
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P2 1 = P(X 1 e(TI -DI,T 1 ] I HI)=P(x =2 1 HI) (4.1.3)

Pul =P(Xre(- ,T -DI] I HI) = I I Hj) (4.1.4)

P4 0 = P(XIE(TI + DI,+-) I Ho) =P(x =4 I Ho) (4.1.5)

P3 0 = P(XI e(T, T, + DI] I Ho) =P(x= 3 1 HO) (4.1.6)

P2 0 = P(XI e(Tj -DI,T I Ho) =P(xj =2 1 Ho) (4.1.7)

plo = P(XIe (-o, T -D 1 ] I Ho) =P(xj = 1 I Ho) (4.1.8)

For sensor 2:

q41 = P(Y1 e (T1 + D2 , +-) I H1) =P(x = 4 1 H1) (4.1.9)

q31 =P(YIe(TI,T, +D 2] I HI)=P(xj =3 I HI) (4.1.10)

q2 1 = P(YIe(TI -D 2 , TI] I HI) =P(xj = 2 1 HI) (4.1.11)

q 1 1 =P(Y e('-,T, -D 2] I HI)=P(xj = 1 Hj) (4.1.12)

q4o = P(Y e(TI +D 2 , +) I Ho) =P(y1 =4 IoH) (4.1.13)

q3o =P(YIE(T1 ,T1 +D 2] I Ho) =P(y, =3 I Ho) (4.1.14)

q2 0 = P(Y e(T 1 -D 2 , T1 ] I Ho) =P(y1 =2 1 H0 ) (4.1.15)

q1o = P(Yl- (-, T, -D 2 ] I HO)=P(y1 = 1 I1 Ho) (4.1.16)

4.2. Evaluate the Expected Value of N (Ei (N))

Using the general expression of E, (V1 ) in (2.5.6), one can derive Ei (V 1 for

the four-level quantizer system.

4 4 pju qll
Ei{Vj) = FZPJiqlilog

j=ll=i jO ,

____q__ + ,P 11q21 +pqiog __q3

= pliqlilog Pjqj0+ pliq2ilog pq20 pq 3 lOg q3

puOqo pioq2o pjoq3o
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+ pliq4ilog pjq1+ p~jqlilog P~qj+ P2 iq2 i logP2 1
p1Oq4 , P2Oq 2O P21q21

" Pliq~ilog P1 3 + p2qlilog P2 4 + P~iqjilog Pjj

•P 21q31  P21q41  P3__q__
+ P2iq3ilog + p~jq4 ilog + p3 iq1ilog

P20 q30  P2oq4o P3oqjo

P31 q21  p31 q31  P31 q41
+ P3iq2ilog p + P3iq3il1og + P3iq 4ilog P31(4

P30q2o P30(30 NOW

"_ P41q1 P41 q2 1  P4 1 0(3 1+ P4iqlilog + P4iq~log P4q0+ P4 iq3 ilog

P4oq2o P4oq2O P4 0q30

P41 q41+ P4iq4ilog'p04 (4.2.1)

Then the E, {N) can be expressed as follows:

r4 1]-1

aA'(B'- 1) + b(B' - A') 4 1pqlqio j (42
El [N) = -"-A [ jq jj l 0J (4.2.2)

a(B' - 1) +b(1 -A') 4 Plql 1

EB(N) = - A Y pjoqjolog I (4.2.3)
Bj 1=1 pjoqloj

where a, b, A', and B' are all defined in chapter 2.

4.2.1. The G Function

In chapter 2, the G function is defined in (2.6.1). By appling the functions

E1 {N) and Eo (N derived in the last section, G becomes

G=E 1 N+EoN

=E 1 (VI) aA'(B' - 1) + bB'(1 - A') + EO' {VI} a(B' - 1) + b(l - A')
B" - A' B" - A'

aA'(B' - 1) + b(B' - A') I4 4 pjlqii -
I pjlqiilog IB'- A''Lh-1I og pjOqjoJ

a(B' - ) +[b(l -pA') 4 IPq

+ a B' -A' joqloog (4.3.1)
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4.3. Minimization of G Under the Double Exponential Assumption

4.3.1. Probability Density Function

Double exponential density functions are applied to the equation G to find the

optimal system. We assume that the double exponential probability density functions

are as same as in chapter 3.

For sensor 1:

HI: fl(X) = X X i121  (4.4.1)
2

H0 : f0(X) = ---e AI x- tAl (4.4.2)
2

For sensor 2:

HI: ft (Y) = "2 e.21Y-9221 (4.4.3)

Ho: fo(Y) = ;L2 e A2 1Y-i 2 1I (4.4.4)

4.3.2. The Sequential Probability Ratio Test

For four-level quantizer, the LR is defined as:

n fl (Xk)fl (Yk)logln = logy
klog f0(xk)f0(YR)

n Pj, q1lY j'.log -- (4.4.5)

k=- Pj0q0
where j,l = 1,2,3,4. Then the SPRT can be restated as sampling the two random

sequences x1 ,x2 ,... and Y,Y2 ,.... sequentially until the random time N, where
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N = first n _ 1 such that loglne (a,b)

= ** if log Ine (a,b) for all n.

At the time N,

Accept H1  if logln  _ b,

Accept Ho if logln < a.

4.3.3. Calculation on G function

Equations (4.2.2) and (4.2.3) give the expressions for E1 [N) and E1 (N). Now

using the double exponential functions,

El (N) = aA(B'- 1) + "A) [ 4  ==1  =B" - A' 'A)Pjo ioj

aA'(B'-I)+b(B'-A') IIq lq 1  I Phd21

11- Ploqo Ploq2o

•P 11q31  ,PIld41 2 l______

+pllq311og - +P11q4 1 gp +p2 jq11 1og Pq

pjq3 ploq4 _____o

+ P21q211og -' + P21q311og 1-' + P21q4 11og q40

______ P__21 P31q31

+P3 .q1 _ og +p3u V3121 og p3-- 2" + P31 q31 og l 0q30
+ P3q q P3 log P30qb0

P3q41 4 P4qll + P41 q2 1+ p31 q41 1og +p41 q1 11og - + p41 q21 log
P30q40 p40qjo p4Oq20

-1p4 1  p41q4 1 
=

+ P4, q31 og p4l q3 +P41q41O ogpqp~oq30 oqo

aA'(B' - 1) + b(B' - A')

B' - A'
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TI DI XI~ e7- I I 
X -LI 2 T2" D 2 X1, -X.I x1-921

T DI -DI - -2 T 2 - D 2 21 Y 221 f T e

X l, e-- IIx - I I ) 2-2 1 Y -9D11

f.. 2 f "_ 
e -2 1  -1 2

2I -4 2 D I X X 1 1 Y 9 2
T x-D T! f -1221X-A21 2

X12 1 T2 i D 2 T DI . T2 2
f -eX I X-L1 I , l - I

T- T2

T -. ,I I -D x XI- -1 T2 - D 
e 22

+T -e l'og T--D T
- -T 2 -D 2

2  .'l .. 1_e_ ., i i,, Xi -.l _lx-xlI ,

T2  D2 "- -

XT 2 +D2  f. 2 f2 2
2 fTI - DI T2 + D2

T2 X, I - I x- f2 !' Y-1'21

2 iT2

TI- D DI T -DI 1  e l lX-91T1 T X2  
Y -IL221

1 - T2 D2 2

2 T2 - D2 2

TI ) _X, I _>.,, 'r+v 2 -2 1Y1L 22 1

T I -X1 4 IX92 D L 2  -X22Y I221 I e 2 -2 2
+ -. -e log T T

TI+V f D"i2 e-XI I-,l I T2 X -)21Y-9211TJD 22 21JD Ti

Ti D2 T2 D2 2

TI x I L T--D 2  -1Y-L2

Ti - -2 2i e 21 Y2 1122 i gTI f DI 22

TIf IT 2 -D 2 2 1  1Ll e 1 I I* i )2 -L1

TI - 2 T.-2T 2

T1  T2

T T T D 1 T2 + D2 I Y

+" e-). IIx-IL121 ;L - 1.21 Y-I2log TI i ITJ

T I D I 2 2 1 .1 TI. xI T2 + D 2 - 2 1,Y- 211

TifDI 2 eif 2 1 "All 1 2 2
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TI
Tj , %I X I -L21 I - -;21 Y - L221

rT f 2e- f 2 e

S- 2  X2 DI  
2

TI --D 2 T22TD 2 2 -

+7x 
I X-L1 1iIi~2 2. eZL22IYiLIL2gI

TI DI T2 + D2

TT +D1 X T2-D2

1+1 -)xl-IL121 T _2__21_Y-_L221 TIT2_D_ 2

+ 1, e gT + DI T X 2YIL21

T2 -D2

TI + D1 T 2 2 IYI22

+ X - 1  T X T2  D2

f,+D 2 T2+fD2' 2 Ti +2 DI T 
2  1y p 2

2 -e.Alx-Pl21 f e2 1 p22 1
|  I2I 2 T2 -D2

T1  
" " X1 T + x

1 + X1 1 _-XI IX-IL121 X eI -)L. -1An2

A2T2 +D2 2 L Og 2

TT 2 +D 2

2D2 T 22

T-I 
T2-

TI +DI  
T 5D ! X1 IX-L1 ll A I2 121

+ -- eT2 - - lo T2

+C LeAI I 5-L2 X2 5 j -~,lg 1 2D
2 X 2 T" + D1 + 1

T2 +D -D2 ei 1 '-LI ' 1 _.L_. -X21 Y - 211I

2 - T2+ D2 2
L DT 2 -D 2
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L T2 + D

%I ~ xi 2  f 2 -_21YinI 0 T1+DI 2 T 2  2IM2

f2e
Tj +j 2T 2  2

T- Dl 2 )I-j~ T 2 + D2 2 (4.4.6)II
+~~~~~ f zY~ 1 g1D

2

2j+D T2 +D2 2

a(B -1) +b( - A') 4

E0 (N) F 'A'PjaqoI POcliO

a(B' -1) +b( - A') I-Ijlg jjj

B' - A' 1p10 1 o ploqio

pj~q2! p11q31  pj1q41

+ P2 0qj01og pOj + p20q2olg P02 + p,20q~oog oq3

P21 pq4 2 IP3, q2I
" P20q40Olg +p3cij,1og2LL + P30q~oog

P20 q4O P3 0 qj 0  P30 (I

+ P30q30Olg P~qI+ P30q40olg P3q+ p4Oqj~og pjj
P30q3O P30q4O P30q2O

+ P40 Cq20 10g P41 C12 + P40 q3!Og Pjq3 + p4oq410 log P1(4

+ p4 q20 og + P4oq 0 q3 +P40qq4o

_aA'(B' - 1) +b('A')
B' - A'

L 2 2
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Ti - Di '_ T2 X L11

TI-DII _11x_111 2 -X1 Y-Z I T e 2 f 2 e- 21 Y - L221"- , f 1  1 29T, T-DT 2

-T 2 -D 2  Ij X X---1'I'II I -MXI -ILli I
- T2 -D2 2

TT -DI T2 + D2
XID.I -XIl I "L21 f 2 .7)2 - AZy-I221

T+ -DI 2I + D2 f -t2

-T2  2 -D I I T2 D2 X2f,.i e Xt l I X-911 f 2 e-X-21 Y-9211

T 2

+j 
-D X -XI 1 T 

2T I - DI X I -) Ix - I jj 21 Y-I.L211 e T2 f D2 2 e

T2+D2 f 2e-7.21 Y-L211

T2+D2 2

Tj~ ~ ~ ~ ~ ~ ~~ ~~~T -X IDTLIIT D 22 tI jfD ef-2 e
T" f' -lx-t2 L es' I-.2 fy-lt2og21

-j-D 2 e X1 I -~tjl1  2 7 -2a1Y-12i1

Ti T2

T2 -XDX2 
T-2  2 - Y - IL221

T, XIz  A -I- " f _ je7X- )L21j,,log~jfD 2-D

+ f Te r''z'_t ,_ ,T T- e
Tj-I2T2- D2 2 1 _Ix-glz11 T

T 2 , T2-D 2 2

T" X"1 -).!IIX- 921 T2 D )L'2 - X.21 Y-I221

Ti-Di 2 T2 +D T

ST2 +DD2 2 e
f X1

1
1 ~eAx IILII f ieC2'YZI21'og T 1 -D~ 2 T

TI DI2T2D2 T T2 -+- D 
2 y - 2

+~~~ L, e-Xlx-tll I -7 - A7"2 y - 2 Y
21  -~ TI 21D2

T 2 -DI T2 2

Tj I e I11 921 f e-21Y-92
T -X-iIx-Liil X f- TD T2 +D2

f e  fj e-1Y-2 1 1 log T

T1-D1  2 T 2 D2 2. -'! IL-11 I L2 X2 1

T. I D 1 2T 2 + D2 2



Tj+ l e-X.I -91i21 T2 - 2 2 -X2 1 Y-L22 1Tj + Dt1 T2 -D22 f _

+ f e 1x-I11 2 X_)L21 Y -A21 Io T1  2 - 2

- 2 T J+Di T2 - -2-

Ti 2 T-D 2
-XjIX-TI I ID X1 - -1

T+Dl T °  f- _eX 1° X-9121+, , j 2 -L1 -IL2

+ _Ll'xIL11 X2 e~ ' -X21__Y__211_Io_ 
_T__2_T2_-_D2_2

T2 D5 I -,.I I -j ll I 2 X2 1 Y-9121 g

rJ Te J 2

J,2 T2 -D 2 2

+T2 
Tj T XI 121 T +D2. 2  y-

"+ i f - .,,-+,., X2 e7%2" Y- A21""log 
T. 2-

2 f 2 2 +Dl T r+

Tj T2 f X, -Xl IX-jIt! I f X2 e-%-21 Y-PJ211

Tj 2 T2  2

T +D2l I -

f JC L I X-IL121I ). 1 12

Tj +Dl 
2zD f1 D2 TTe-7

2 2T _+,

2 T2 +D 2 
2

L T2 - D2

+~~ ~ ~ ".t e-. X2 e %1yn1T ,,- 2
T- +DA 4 
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1 .- 11 L221

T2 +D 2D 2 L i e' - 11 I - IJLl I T2 -Dy2e - t21 - 2 I+ TJD - -JJ .-e lo

T2+D2

T2

T2l L -7.11 I -IL121 f X2 e-)L21 Y- IL721

+ 2 2 T2
7 T2

TI +Di T2 - 2 T 2 1Y 21 1

T 2 2 T2 -D 2 2

T2 + D2
Ie1 L-IL121 2 e 2 Y -2L221

i T 2+D 22 A21 21I 1 gT+D1 T2 2

7-I 2 - 1t f j- L T2IT + D2
T 2I IT '  e+ -X'I -A lll 1 -- e _ L2 Yl I L 1

T2 T2 2
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+ T JD T2 +D2  (4.4.7)
Tt +D , T 2,+ I2T , e. _- X. I =.- pj I e' ! e- X I x- tI 1

Combining equations (4.4.6) and (4.4.7), G = E, { N} + Eo { N) can be calculated.

Below is the list of the probability of each quantized level under different T1, D1 , T2 ,

and D2 where p.1 < T1 < p 12 and p.21 < T2 < p 22. It has been found by our evalua-

tion that G has its minima at the region ., 1 < T, < . 12 and .21 < T2 < . 22 .

For sensor 1,

If T1 +D 1 -> 912 andT 1 -DI 2t . 11 ,

= f e-)I, X-121 - eAl (TI +D1 -12)P41 TI +D
T +D2 2

P31 =  T j e - l I x-1 2 1  1 le-X(9 12 -T1)2 1 -X1(T1 +Dl - 112)

22 2

,I 1X- 12 = 1 e-'eI(912-T( 2 ) le-'(912-T +DI)

I 22P1= TI - DI

P Tl =  I e-L Ix- 9 12 1 = 1 -XI(1 12 -Tl+D 1 )

2f 2
0= 1 -XI I(T 1 +D1 -4jj)

P40 __ -e
2T + DI 2

S Tj D 1  e-;q xIX- 11 =1 1 -X1(TI-P.) -1 -e -'.(TI +DI- jtj )

T 2 2 2 2

P20 = e -x.I X-gl I 1 - lX(Tl-Dj-gI) - e-Xl(TI - .IIi)

Tj f D12 2 2
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1 T 1 T1 D1D± 1

P10= f 2

If T, + D, 1.112 and T, - D, <1.

P41 = i e -j I Xgl~l 1 -XI (T + DI -g 1 2 )

P1= Tj D .- 41 X-121 = I-e -L(1-I X T 92

J,+D 22

P21 = f IA X-9121~ =1Ie (1-I X 2 T+D)
2jD 22

e~ l 1 -9121 1 -)Ll.12-T +Dl)

P40= r -;Le4 I X-A12I = 1-e A T D lI
f~ 2

T1 +Di _)L XI XR1 1 I 1-X 1 (TI -±1 ) 1-Lj (T + DI -. L1 1)

P30= f e 2 e -e

P2 7 Tj e-XlI XI±11I =1e -X 1 (j±1 -T 1 +Dl)_ l (T~I -12)

2jD 22

T1 -DI

Pio = e i -e4j I X4111 I = I e4l(gi I -T1 + DI)

' 2 2

P41 L, . 1XlI X-I±121 = 1 e-X 1 (j 12 -Ti -D 1 )

P3 1  j+ D 1 % -L1X- 2 1 -X(9 1 2 -TI-Dl)_ I e-X(9 2 -T)

2 ~je1L 2 2
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T2 =I X1-LIX-12 I ie -XIL12-TI) -XA2T +I
P1TI fDI 2 22

p l=TI -DI ;LI e_;, X-9121 1 e-'L(j 12 -T +D)

S2 2

P40 = )T _;IIX-l = I-eXI( +D-g 1

= rI+D L X e_'IIxgll I 1 -Xj(Tj -g'ii) 1 -LI(TI + DI - i 1)
P30= f ---

TI2 2 2

P20 = f I .X LI Ie L(T-D 1-g)_ 1 -'I (TI -~II1)

TID 2 2 2

Pio = TIfD Ie;I I -l I el (TI DI i±1)
2 2

If TI + D, < 12 and T1 - D, <. 1 l

P41 = 7 l X'e I X-4L121 _L7L(I-I- '

= TI+DI)LIeXII Xgl 1 e-'(9 12 -T-D)_ e1 92-
P31 =f Le'IX~~I=e-~~1L21

TI2 2 2
TI ;l eLI x-g~l 1 e-' 1 (j 12 -T1 ) 1 -XL'(j± 12 -T + DI)

P 1  = -ef I2

Pi1 = f x I e_ I 1 X 12 I -Xi(j± 12 -TI +DI)

2 2

P40 X, -XI IX-g±1 1I I -_XI(Tj+DI -. lj)
T+D 1  2

P3 I+ D XD1 _ I X-glj I 1 e-LI(T 1 -gw ) _ I -X1LI(TI + D I - gl 1)

2 2 2



T1

P20 = Tj X - I X - I 1 _Le-L(gj.L -T 1 +D) 1 e-; 1 (T 1 -412)
T1 -DI 2

O = I -X I X- l1l I = 1 -XI(4II-TI +DI)
P 2 2

For sensor 2, the probabilities of quantized level are similar to those in sensor 1.

For sensor 2,

If T 2 + D2 2t j 22 and T2 -D2 2t 9 21,

q41 =  00 ;L2 e-X21 Y-I 221 = I e-2(T2 + D2 -9 2 2 )
T2 f+D 2 2T2 +D2 .

T2 -X2  y-1Y- 2 1 - 2( 22-T2) e- 2(T2+ D 2- 922)
3 22 2

qI=T2 ?L2 e-%21 Y-9221 = 1 e- 2(g22-T2) _ e-'L2(g22-T2 +D2)

q 2 7 -" D 2 2 2-- --

T2 f D2 X2 -;21y-A22 1 e-X2(g2-T 2 +D2 )

T+2 2

q40 = X2 e)21 Y-211 = Ie-2(T2+D2-21)

T2 +D2 X2 1 e-X2(T 2 -9 21) _1 e-x 2( T2 +D2 -IL21)

q2 2 2

20
T40= 2 x-L2 Y - 2 e2(T 2-D2 -1) _ 1 e-X2(T2-9 21)

T2 -D 2  2 2
T2 - 2 X2 2(TD 2 IL2 )

q10 = J -T-e 2 e

-M a
If T2 + D2  2 922 and T2 - D2 < 92 1
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q4l =  L2e-X21 Y-IL21= -1 1-2T 2-92
T2+1 2 2

T22
ql=T2 +D2X X2 I1Y-9i22 1 = 1 e'2(A.22-T 2 ) - e4'2(T2 +D2 - 22)

12 2 2 --

q~l = T2  X2 
4)2Y- 221 = 1-e .2(gn2-T 2 ) _ -X 2 (. 22 -T 2 +D 2 )

T2 -D 2 
2  2 2

T2 ___D2 X2 Y-X2iY-221 = 1 -X 2 ( 2 2 -T 2 +D 2 )qll= - e
2 2

q = 2 -), 2.Y-9 2 1 1 - 1 -'. 2 (T 2 +D 2 - 92 1)q4o = J -e= e
T2 

+ D2 
2  2

T2+D2X e-)21Y21 1 - 1 e -%2(T2-92 1) - 1 -X 2 (T 2 +D 2 -1"2 1 )

= ___ -e - -

T 2 2 2
=T2 X2 e -X2 1Y- 9211 = i _e-X 2 qt2 1 -T 2 +D 2 ) 1 1 -' 2 (T 2 -A22)

T2 fD 2
2  

2 2

T2=T2 -__-X 2 1Y-i21I -2 1 -2(.21 -T 2 +D 2 )q1°= __ T=-e
f 2 2

If T 2 + D 2 < g22 and T 2 - D 2 *a 2 1

q41 = j '2 e-X21Y-9l221 = 1- le-X 2 (g22 -T 2 -D2)

T2 +D 2  2
T2 + D

T2+D2X 2 -;2 1 Y-922' = 1 -X2(22 -T 2 -D 2 ) 1 -X2 (. 22 -T 2)=q31  =-e -- e

12 2 2 2

T2  )L2 e-X21y-9221 = 1 -X2 (9i22 -T 2 ) 1 -'. 2 (9 22 -T 2 +D.2)

q21 = = -e -e7
22 2

T2 f2 X2 e-X, I Y -A22 1 -X2(9i22 -T 2 +D 2 )

2
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q40 00 e-.2 Y-Y- 21 1 e-L2.(T2+D2- 21
q40 = J 13T  = 2

T2 +D 2  2
T2 + - -2 1 - 2 (T 2 -± 21 ) 1 -- 2 (T 2 +D' - t2 1)

q30=j ~=eT

T2O x-X21 Y 921 1 -eX2(T2 -D221) - 2T-M1T 2 2 2

q20 = T 2 e - ) '- I Y-A 21 I"- -el -2(T2 -1D2 -21) - 2Le-'2(T2 - t21)

T2-fD2 2 22

T2 - D2,)

q o = e - ' Y-9I21 = 1 e-2(T2-D2-921)
2 2

ST22 e-)L2 Y-9211 = 1 -X2 (T2 - 9 2 1) 1 -' 2 (T2 +D2 -IL2 1 )

122 2 --

T2  C2 _.2I Y- 921 1 = 1 e-. 2(T2 -D 2 -$±2 1)_ 1 e-X2 (T2 -± 21 )
'120 = = - __ -i

T2 D2_2D2
T2 D2

q To =  f 2 e-x2 .21Y-L21 = 1 - - - '
2 (T2 -D2-L21)

2 2
If T 2 + D2 < g22 and T 2 - D2 < 92 1

1 - 1 -- 1 2 e-- I e2(gn2- T2- D2)

T2 +D2  
2

qI 1 -Le - x2 ( 22 -T 2 -D 2 ) 1e- ;2( g22 - T 2)

T2 +D2 2

T e-2I Y-2 1 2(922-T2)- 1 -;L 2 (j 2 2 -T 2 + D2 )
q121 = =-e€ -- e

T2 D2
2  2 2

,. 2 - 2 1 -)L2(I.9 22 -T 2 + D2 )

2 2

q410 = X2 2Y-..-21 1 -. 2(T2+D 2 - 2 1

T2 +D 2  2
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T2 +D2 42'i.2 1  
- 1 - 2 (T 2 - 2 1) 1 - 2 (T 2 +D 2 - 21)

q30  - .. X Y-f21 = -e e

T2  2 2 2T2

q20 =  " X2 e-X2 Y-'2l = 1 - _-e - X.2 ( 9L21 -T 2 +D 2 ) 1 -X2 (T 2 - "2 2 )

T2 D2 2  2 2

T2-D2 2  I 1 -, 2 (i± 2 -T 2 +D 2 )

q10 = f-2e)2 -L1 =-e)L"21-T+D)2 2

4.4. Numerical Evaluation of the G Function

The numerical evaluations are done by using the G function defined in the previ-

ous section. Since we have to deal with four variables, namely D 1, D2 , T1 , and T 2 , it

is not very convenient to graph G in terms of these variables. The graphs plotted here

are the ones with optimal T1 and T2 which means that G is the smallest at that pairs

of T, and T2 . In Figure 4.2, the curves represent the G of the four-level quantizer

sequential system (FQSS) with respect to D1 and D2. It is under the conditions that

T1 =T 2 =0.0, 911 =-1, 921 = 1, 912 =-2, I.22 =2, and a= [3=0.01. In the evalua-

tion, G is also calculated using different pairs of T1 and T2 , and it is shown in Figure

4.3.

In Figure 4.4, the means are kept the same as Figure 4.2, and both a and [3

increased to 0.05 with T1 = 0.0 and T2 = 0.0. Next, it shows G function with dif-

ferent error probabilities, a = 0.01 and 13 = 0.05 with T, = T2 = 0.0 in Figure 4.5.

With means shifted to the left, ijI = -2, .21 = 1, P.12 = -3, and 922 = 2, the G is

drawn in Figure 4.6 with the same error probabilities as the previouse graph and T1 =

T 2 = -0.5.
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Figure 4.7 shows what happens to G, when the means are g, I - -3, i921 = 3,

P12 = -5, and P.22 =5. The error probabilities ccz=O.01 and 03=.05 with T, =-0. 1

and T2 = -0.2.
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CHAPTER 5

Comparison of the Performance of Sequential Systems

5.1. Performance of Individual System

G function has been defined as the sum of the expected number of data to be

taken by the system under hypotheses H, and Ho. By minimizing G, it also minim-

izes the data that satisfies both hypotheses. Our optimal sequential system is obtained

by finding the minimum of that function.

In the previous chapters, the G function is evaluated over different quantizers,

means, and error probabilities. Here, those functions are compared with each other

such that different characteristics of the sequential systems are studied.

The plots that we discuss here are from Chapter 3 and 4.

5.1.1. G of Two-level Quantizer System

In Chapter 3, Figure 3.2 shows the G function with respect to T1 and T2 . As T1

and T2 come closer to the origin, G decreases. It has its minima at T, = 0.0 and

T2 = 0.0, and G = 45.26. In this case, it seems that T1 and T2 are independent of

each other that no matter what T1 is, the minima always occurs at T 2 = 0.0. Figure

3.3 shows that G decreases as the error probabilities increase. This can be easily

explained since the system allows a larger percentage of error, it requires less data to

be collected before making a decision. Again when T1 and T2 are at the origin, G

has its minima which is equal to 26.63. Figure 3.4 uses different error probabilities,
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and cc = 0.01 and 3 = 0.05. The minimum of G is equal to 35.61 at T1 = T2 = 0.0.

. Table 5.1 lists the the minimum of G from Figure 3.2, Figure 3.3, and Figure

3.4. It is clear that G decreases as the error probabilities increase.

A little more interesting observation can be found when the means move away

from the origin as shown in Figure 3.6 and 3.7. The minimum of G does not occur at

T, = T2 = 0.0. Instead, as in Table 5.2, it has its minima at T, = -0.1 and T2 = -0.2,

and cc > 13. The data of Table 5.4 are from Figure 3.6. From the table, one can notice

that T2 at the minimum G increases as T1 decreases. Figure 3.7 shows the case in

which the error probability a is less than 3, both T1 and T2 are shift to the left, and

T, = 0.3 and T2 = 0.2. The minimum value of G is 6.509 which is smaller than the

one in Figure 3.4 under the same error probabilities. This shows that it is easier to

detect a signal when the two density functions under hypothesis H0 and H, are

furiher apart.

Thresholds a= =0.01 a= 0.01 =0.05 a= =0.05
T, T2  G G G

-0.1 0.0 49.68 39.18 29.23
-0.8 0.0 48.02 37.86 28.26
-0.6 0.0 46.31 36.87 27.53
-0.4 0.0 45.93 36.18 27.03
-0.2 0.0 45.42 35.76 26.73
-0.1 0.0 45.30 35.66 26.66
*0.0 *0.0 45.26 35.61 26.63
0.1 0.0 45.26 35.64 26.66
0.2 0.0 45.42 35.72 26.73
0.4 0.0 45.93 36.10 27.03
0.6 0.0 46.78 36.76 27.53
0.8 0.0 48.02 37.72 28.26
1.0 0.0 49.68 39.00 29.23

Table 5.1 Tabulated Data of Minimum G with Two-level Quantizer
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a=0.05 03=0.01
T, T2  G

-0.3 -0.1 8.08
-2.5 -0.1 7.51
-2.0 -0.1 7.16
-1.5 -0.1 6.82
-1.0 -0.1 6.64
-0.8 -0.1 6.59
-0.6 -0.1 6.55
-0.4 -0.2 6.53
-0.2 -0.2 6.517

*-0.1 *-0.2 6.516
0.0 -0.2 6.519
0.1 -0.2 6.52
0.2 -0.2 6.53
0.4 -0.2 6.56
0.8 -0.2 6.64
1.0 -0.2 6.71
1.5 -0.3 6.93
2.0 -0.3 7.24
2.5 -0.3 7.68
2.9 -0.3 8.14

Table 5.2 Minimum G with Two-level Quantizer c = 0.05 3 = 0.01

5.1.2. G of the Four-level Quantizer System

In general, as it shows in the graphs of Chapter 4, both D 1 and D2 do not change

for a given means. However, like previous section, the G function decreases as the

error probabilities increase. In Table 5.3, the information in Figure 4.2, Figure 4.4,

and Figure 4.5 is tabulated.

As in Figure 4.7, it has the smallest minima of G compared to other figures

because the means are further apart from each other which makes the target more dis-

tinguishable. This allows the system to require less data to make the decision

whether the target is present. The data from Figure 4.7 is tabulated in Table 5.4.
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T,=T 2 =0.0 I1 a =3=0.01 a Q=0.013=0.05
DI D2 a=13=0.05 G G
0.1 1.3 43.52 34.24 25.61
0.3 1.3 43.00 33.82 25.29
0.5 1.3 42.69 33.59 25.12
0.6 1.3 42.64 33.55 25.09
*0.7 *1.3 42.63 33.548 25.088
0.8 1.3 42.67 33.58 25.11
1.0 1.3 42.86 33.73 25.22
1.5 1.3 43.27 34.05 25.46
2.0 1.3 43.49 34.20 25.58
3.0 1.3 43.65 34.45 25.69
4.0 1.3 43.74 ] 34.42 25.74

Table 5.3 Tabulated Data of Minimum G with Four-level Quantizer

T, =-0.1 T2 =-0.2 a =0.05 [3=0.01
DI D2 G
0.1 3.3 6.14
0.5 3.3 6.78
1.0 3.3 5.84
1.5 3.3 5.76
1.7 3.3 5.75
1.9 3.3 5.743

*2.0 *3.3 5.742
2.1 3.3 5.744
2.3 3.3 5.75
2.5 3.3 5.77
3.0 3.3 5.84
4.0 3.3 5.97
5.0 3.3 6.04

Table 5.4 Minimum G with Four-level Quantizer, c = 0.05 [3 = 0.01

Table 5.5 tabulates the data of various T1 and T 2 with c = 0.01, f3 = 0.01,

U11 =-1, u 12 = 1, u21 =-2, and u22 = 2. This shows how G varies with T1 and T 2 .

5.2. Comparison of System

From the numerical analysis, one can conclude that the system with a four-level

quantizer, in average, requires less data to make a decision than the one with a two-

level quantizer. By compared by picking a column from both Table 5.1 and Table
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T, =-0.2 T2 = -0.3 T -T2 = 0.0 T, =0.3 T2 = 0.5
D2 DI G DI G DI G
0.1 0.7 43.84 0.7 43.70 0.8 44.06
0.3 0.7 43.49 0.7 43.36 0.8 43.69
0.5 0.7 43.21 0.7 43.09 0.8 43.39
0.6 0.7 43.10 0.7 42.98 0.8 43.27
0.8 0.7 42.92 0.7 42.81 0.8 43.08
1.0 0.7 42.80 0.7 42.70 0.8 42.94
1.5 0.7 42.73 0.7 42.65 0.8 42.84
2.0 0.7 42.90 0.7 42.87 0.8 43.94
3.0 0.7 43.33 0.7 43.27 0.8 43.39
4.0 0.7 43.55 0.7 43.48 0.8 43.67

Table 5.5 G with Various T1 and T2

5.3. G of the two-level system is larger than the one of the four-level system. For

a = 0.01, 13=0.01, Ul =1-1, U12 = 1, U21 =-2, and u22 = 2, the improvement on the

G function is 5.8 %. However, for ox=0.05, j3=0.01, u11 =-3, u12 = 3, u21 =-5,

and u22 = 5, the improvement on the G function is 11.88 %. Table 5.6 shows the

improvement on the G function for various error probabilities and means.

Notice from Table 5.6, the improvement of G for a given set of means are the

same no matter what the error probabilities.

The other observation is that T1 and T2 of the four-level quantizer system is the

same of the two-level quantizer system. T1 and T2 from a two-level quantizer system

can be used for designing a four-level quantizer if it is under same means and error

probabilities. This approach will reduce the total number of calculation to find the

optimal G.



G with G with
Condition Two-level Quantizer Four-level Quantizer % Improvement

a = 0.011 = 0.01
u1 1 

= -1 u12
= 1 45.26 42.63 5.8%

U21 = -2 U. = 2

a = 0.01 3 = 0.05
u11 = -1 u 12 = 1 26.63 25.09 5.8%

U21 = -2 U22 = 2

a = 0.05 3 = 0.05
U1I =-1 u12 = 1 35.61 33.55 5.8%
U21 = -2 u22 = 2

a = 0.05 3 = 0.01
u, = -3 u12 = 3 6.516 5.742 11.88%
U2 1 = -5 U2 2 = 5

Table 5.6 Improvement on G
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CHAPTER 6

System Simulations

6.1. Simulation Method

From Chapter 3 and 4, the optimal sequential detection systems are found. It

has been shown that the quantized levels of a quantizer has a major effect on the

sequential system. By selecting the quantizers that associate with the optimal system,

the system can be evaluated under the real environment.

6.1.1. Derivation of The Double Exponential Environmeat

Since the computer that is used to simulate the system has a random value gen-

erator with uniform distribution, transformation method must be used to generate the

double exponential density environment.

Let x be the uniform distributed random variable, and x - (0, 1), then the double

exponential density function Fy(y) is equal to x. Thus y = Fy- 1 (x).

The distribution function can be evaluated by integration of the density function

fy(x)=-e x ., and

Fy(x) = 2 -e z-9 dz

If x .t, then

Fy (x) I--exx-L
2

6)8



If x < p., then

Fy(y) = 2 e - (Wx)

the inverse fuction Fy(y) is

y= + -- log(2x) for x > 0.5

Y = - -log( 2(1 - x)) for x <.5

6.1.2. Simulation and Discussion

The first systems to be simulated are under the conditions that gtI = -1, .12 = 1,

1±21 = -2, and 1.22 = 2. With the error probabilities varing, the amount of data N

required to make a decision are collected. Total of one thousand trials are made, and

Figure 6.1 shows N of two-level quantizer system with error probabilities cc= 0.01

and P3 = 0.01. Figure 6.2 is N of four-level quantizer system with same error probabil-

ities as in Figure 62. In Figure 6.3, Figure 6.4, and Figure 6.5, it gives an enlarged

view on how N varies in different trial and error probabilities.

Figure 6.6 assumes that the means .,I = -3, 9 12 = 3, .2l = -5, and 1±22 = 5, and

N under both quantized systems are plotted. Notice that the dashed line of all plots

represents N of the four-level quantizer system.

From the graphs, one may notice that the system with four-level quantizer has a

higher G values than the system with two-level one. The results of the system simu-

lations confirm that in average the four-level quantizer system requirs less amount of

data than the two-level one.
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CHAPTER 7

Conclusion

The objective of this study is to analysis and design a two-sensor sequential

detection system. The optimal system is found by numerical analysis, and that sys-

tem is simulated.

In this study, the expected number of observation is first derived, and then func-

tion G is defined as the sum of that expected number under both hypotheses. By

minimizing G, it minimizes the expected value of number of observations required.

G is directly related to the quantizer of each sensor. As shown in chapter 2,

function G is an equation in terms of the probability of the quantized levels.

Minimum G can be found by selecting appropriate quantizer.

Two-level and four-level quantized system are used in the analysis. Assuming

the environment is double exponentially distributed, G is evaluated under various

conditions. The numerical evaluations show that a four-level quantizer system has

smaller value of G than a two-level one. This shows that a four-level quantizer sys-

tem requires less data than a two-level one to make a decision.

It is also found that for a given density function, the quantizers are always the

same for both sensors to have a minimum value of G no matter what are th6 error

probabilities. As the means of the density function moving further apart, G

decreases, and the quantized levels are not necessarily divide the probability space

symmetrically. The system simulation confirmed the results of the evaluation.

70C



In the future, it might be interesting to look into the case of dependent observa-

tion.
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APPENDIX A

Program for Evaluation of G Function of Two-level Quantizer System

This program calculates the G function of two-level quantizer system for vari-
ous parameters. The means of double exponential and error probabilities are pro-
vided, and then this program calculate the probabilities associated with each quan-
tized level for different two-level quantizers. The main routine find the value of G.

The plots in chapter 3 are provided by this program.
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This program is used to find the minimun number of data that
required to determine wheter a target is present by
appling sequencial detection theory. Two independent sensers
are used to detect the signals from the source. Two-level

quantizers are used here, and optimal quantizer is found.
#include

<stdio.h> #include <math.h> *define the value of error probabilities*/ #define alpha 0.05 #define beta
0.01 /*define the constants of double exponential density functions*/ #define UIO -3 #define Ul 1 3
#define U20 -5 #define U21 5 r'define 11 0.25 #define 12 0.125

maino /* find min EN and store the data for further uses*/
double TIT2; /*quantized levels of both sensors*/

double Consl0,ConsOO;
double U10,U20;
double P10,P20;
double f;
double m,tatb;
double U0;
FTLE *fpout;
fpout fopen("chp3fg6","w");

P ~ * calculate G func-/**on ************************************************** *** alculate G func-

for ( TI = -3.0; TI <= 3.0, TI = TI + 0.1) 1
for ( T2 = -5.0; T2 <= 5.0; T2 = T2 + 0.1) 1
f = (Conslo /UI(TIT2)) + (ConsOO /U2(T1,T2));
fprintf(fpout,"%5.2f %7.2f % 10.4f0,TI,T2,j);

I

fclose(fpout); )

double U(pl,pO,ql,qOc 1,c2) /* calculate the U expression */double pl,pO,ql,q0, double cl.c2;

double i;
i = cl * log((pl * (I -pO)) / (pO *(I - pl)))

+ c2 * log((ql * (I -qO)) / (qO * (1 - q1)))
+ log(((l - p1) * (1 - q1)) / ((I - pO) * (1 - qO))),

return(i); )

/* find the probabilities of quantized levels*/ double PI (l,t,u) double I,tu; {
double i;
i = 0.5 * exp((-l) * (t - u));

return(i); )

double P2(l,,u) double l,tu;
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double i;
i = 1 - 0.5 *exp( (4I) * (u - t)

return(i);)

/*' find the value of Ul which involves prob p & q */double Ul (ti ,r2) double ti ,t2;
double pI,pO,qi,q0,
double clc2;
double P IOP20;
double UQ;
double uii,uO,u2i,u20;
double LI L2;
uli = Uii;
U10= U10;
u2 = U21;
u2 = U20,
LI = 11;
L2 = 12;

if (t1>=ulI && t2>= u2i)(
pl. = PI(L1,tl,uii1),
p0 = PI(Li,tl,u 10);
qi = PI(L2,t2,u2 1);
qO = PI(L2,t2,u20);
ci = pi;
c2= ql;
retun( U(pl ,pO,ql ,qO,c 1 £2));

if (ti >= ul 1 && t2 >= u20 && t2 < u21)(
p1 = PI(Li,tl,ul 1);
p0 = Pi(LI,ti,uio);
q I = P2(L2,z2,u2 1);
qD = PI(L2,t2,u20);
ci = pl;
c2= ql;
retum( U(pI ,pO.qi ,qO,cl1,c2));

if (I >= ulI && t2 <u2O)
p1 = P1(Li~zi,ul 1);
p0 = PI(LI,tI,ulO);
qI = P2(L2,t2,u2 1);
qO = P2(L2,t2,u20);
ci = pl;
c2 =ql;
retun( U(pl ,p0,ql,qO~cI ,c2));
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if (t < ul I&& tl>=ulO &&t2 >- 2l)
p1 = P2(L1.z1,ul 1);
pO = PI(L1,ltulQ);
ql = PI(L2jZu2l);
qO = PI(L2Au2O).
ci =pl;
c2 =ql;
retuu( U(pl,pO,ql,qO,cl~c2));

if (tl <ullI && tl >--ulO &&2Q<u 2 I && t2 >=u20)
p1 = P2(Lltl1ul 1);
PO = PI(L1,llulO);
ql = P2(L2A2u2l);
qO = P(L242,u20);
ci = pl;
c2 =ql;
wnzr( U(pl,pO,ql,qOc14c));

if (tl < l && l >-- ulO && t2< u20)
p1 = P2(L1zi,u 11);
p0 = PI(Li1,ulO);
ql = P2(L242.u21);
qO = P2(L2,12uM0;
cl = pl;
c2= qI;
luturn( U(pljpq1.q0c l2));

if (tl <uO && Q >= u21)(
pi = P2(L1.Z,ull1);
p0 = P2(LIitl,ulO);
qi = P1(L2j2.u21);
qO = P (L2A~u20);
ci = pl.
c2 =ql;
rezrn( U(plIpO~qIqO~c Ic2));

if (ti < ulO && t2 < u2l &.& t2 >= u20)
p1 = P2(Llt,zl 1);
p0 = P2(LI.zl~ulO);
qi = P2(1.2A2u21);
qD = PI(L2Ai2u20);
ci = pl;
c2=-ql;
Imffn( U(pip0.qqO~c £c2));
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if (tI <ulO &&t2 <u20)(
p1 = P2(L lti,ul 1);
p0 = P2(L1,cl,uiO);,
qI = P2(L2,t2,u2 1);
qO = P2(L2,t2,u20);
ci = pl;
c2 =ql;
return( U(pi ,pOqiqOcl c2));

/* find the value of U2 in function G which involves prob p & q *1double U2(tl .t2) double tl .2;
double pi,pOqlqO,
double cl,c2;
double P1OP20;
double UQ;
double ull1,u 1O,u21 ,u20;
double Li L2;
ull =Uii;
U10O= UlO,
u2I =U2 1;
u2 = U20,
LI = 11;
L2 = 12;

if (tI >= ul 1 && t2 >= u2i)f
pI = PI(L1,ci,ul 1);
p0 = PI(Ll,ti,ulO);
qI = PI(L2,t2,u2l);
qO = PI(L2,t2,u20);
ci = p0;
c2 = qO;
return(U(pl1,pO.qi ,qO,clI.c2));

if (cI >= ul I && Q2 >= u20 && t2 < u21)
p1 = PI(Llti,ul1);
p0 = Pl(Ll,tl,ulO);
l= P2(L2,t2,u2 1);

qO = PI(L2,t2,u20);
ci =p0A
c2 = qO;
return( U(plpO~,q O~c lc2));

pI = PI(Ll,tl,uii1);
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PO = PI(LtltlulO);
ql = P2(L2,t2,u2 1);
qO = P2(L2,t2,u20);
tl =pO;
c2 = qO;
return( U(pl ,pO~ql,qO,c lc2));

if (l < ul 1 && ti >= ulO && C2 >= u2l)
pI = P2(L1l,tl,u 11);
PO = PI(Ll,tl,ulO);
qi = PI(L2,t2,u21);
qO = P I(L2,t2,u20);
ci = pO;
c2 = qO;
return( U(plpO,ql,qO,c lc 2));

if (ti <ul I && ti>= ulO && t2 <u2l && t2 >=u20)(
p1 = P2(L l,tl,ul 1);
p0 = PI(Ll,tl,ulO);
qi = P2(L2,t2,u2 1);
qO = P1(L2,t2,u20);
cl =pOA
c2 = qO;
retumn( U(plpOqlqOc I c2));

if (ti < u1 && ti>= ulO&& 2< u 2O)(
p1 = P2(LI,tl,ull1);
p0 = PI(Ll,tl,ulO);
ql = P2(L2,t2,u2l);
qO = P2(L2,t2,u20);
cl =p0A
c2 = qO;
return( U(plpOql,qOcIc2));

if (tl <ulO && t2 >= u21)
p1 = P2(Ll,tl~ul 1);
p0 = P2(L I,t I,u 10);
ql = P1(L2,t2,u2l);
qO = PI(L2,t2,u20);
ci =p0;
c2 = qO;
return( U(pl ,pO,qlqO~c I c2));

if (tl < ulO &&t2 <u2l && t2 >= u20)
p1 = P2(L I,tl,u 11);

83



p0 = P2(Ll,tl,u 10);
qI = P2(L2,t2,u21);
qO = P I(L2,t2,u20);
ci = pO;
c2 = qO;
return( U(pl ,pO,ql,qOcl ,c2));

if (tl < ulO && t2 <u 20)
pl. = P2(L1l,tl,ul11);
p0 = P2(L I,t l,u 10);
qI = P2(L2,12,u2 1);
qO = P2(L2,t2,u20);
C1 = pO;
c2 = qO;
return( U(pilpO,q l,ql.cil,c2));

/* calculate constants in function G*I double Cans 10
double a~b;
double AB;
double i;
A =(beta) /(1 - alpha);
B =(1 -bet)/ alpha;
a = log(A);
b =log(B);
i= (a * A *(B - 1) + b B *(1 - A)) /(B - A);

return(i);

double ConsOO(
double a,b;
double A.B;
double i;
A =(bea)/ (I - alpha);
B= (I -beta) /alpha;
a = log(A);
b = log(B);
i = (a * (B - 1) + b * (I - A)) I(B - A);
rcturn(i);)
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APPENDIX B

Program for Evaluation of G Function of Four-level Quantizer System

This program calculates the G function of four-level quantizer system for vari-
ous parameters. The means of double exponential and error probabilities are pro-
vided, and then this program calculate the probabilities associate-' with each quan-
tized level for different four-level quantizers. The main routine find the value of G.

The plots in chapter 4 are provided by this program.
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/1*. ******************************************************* * *******

This program is used to find the minimum number of data that
required to determine whether a target is present by
appling sequencial detection theory. Two independent sensers
are used to detect the signals from the source. G function is
calculated using various four-level quantizers.

#include
<stdio.h> #include <math.h> #define alpha 0.05 #define beta 0.01 #define UIO -3 #define Ul1 3
#define U20 -5 #define U21 5 #define 11 0.25 #define 12 0.125 #define TI -0.1 #define T2 -0.0

maino /* find min G and store the data for further uses*/
double D1,D2;
double Conslo,Cons0O;
double U10;
double PIOP20,P30,P40,P50,P60,P70;
double f;
double m,d,d4;
double UO;
int k;

FILE *fpout,*fp;

m =1000.0;
3 = 0.0;
d4 = 0.0;f********************************************************* * calculate G

function *

fpout = fopen("chap4fig6.t","w");

fp = fopen("supfig6.t","w");
for ( D1 = 0.1; D1 <= 3.0; DI = DI + 0.1)
for ( D2 = 0.1; D2 <= 5.0; D2 = D2 + 0.1) {
f = (Conslo /UI(D1,D2,1)) + (ConsOO /UI(D,D2,0));
if( f<= m)

m =f
d3 = Dl;
d4 = D2;.
}
fprintf(fpout,"%5.2f %7.2f %10.4f0,D1,D2,f);
}

fprintf(fp,"%5.2f %5.2f %l0.4r3,d3,d4,m);

fclose(fpout);
fclose(fp);

double U(p41,p31,p21,pli,p40,p3O,p2O,pl0,q41,q31,q21,qll,q40,q30,q20,q10,k) /* calculate the U
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expression */ double p4 1,p3 1,p21 ,pllI,p40,p30,p2Op10; double q4l1,q3lI,q21 ,qll1,q40,q30,q20,qlO; int

k; (
double i~ab;

if~ =--0) (
a = plO qlO log((plI ql1) / (pO qlO))

+ p2O' qlO* log((p!I *ql1) /(p20*qlO))
+ p30 *qlO *log((p3l qI 1) / (p30 *qlO))

+ ~p40*qlO* log((p4l 1 1)/I(p40*qlo))
+ plO *q20 *log((pll 1 q21) /(plO *q20))

+ p20 * q20 * log((.p2l * q2 1) / (120 * q20))
+ p30 * q20 * log((p31 * q21) / (130 * q20))
+ p40 * q20 * log((p41 * q21) / (p40 * q20));

b = plO q30*log((pll1 q3 1)(plO q30))
" p20 *q30 *log((p2l q3 1) /(p20 q30))
" p30 *q30 *log((p3l q3l) /(p30 

*q30))

"+p40*q30* log((p4l *q3 1)/(p40*q30))
"+pIO q40* log((pl1 I q4 1)/(p10 *q40))
" p20 * q40 * log((p21 * q4 1) / (p20 * q40))
" p30 * q40 * log((p3l q4 1) / (p30 * q40))
" p40 * q40 * log((p41 * q4 1) / (p40 * q40));

i= a + b;
return(i);

if(k= 1)(
a = pI I qI Ilog((p11*qI 1) /(pl0*qO))
+ p2l *q1 I*log((p21*qIl1) /(p20*qlo))
+ p3l qI I log((p3l 1) / (p30 qO))
+ -p4l. *ql Ilog((p41 *qI1) /(p40*qIo))
+ pl 1*q2I *log((pl I q2l) /(p10*q2))

+ p21 * q21 *log((p21 * q21) / (p20 q20))
+ p3l. * q21 *log((p3l * q2l)I/(p30*q20))
+ p4l * q21 * log((p4l * q21) /(p40*q20));

b = pll1q31 log((pl I*q31) /(pl0*q30))
+ p21 * q31 * og((p21 q3 1) / (p20 * q30))
+ p31 * q31 * og((p31 q3 1) /(p30 * q30))
+ p41 * q31 *log((p41 q3 1) /(p40 * q30))
+ pl 1*q4I *log((pl I*q4 1) /(p10* q40))
+ p21 * q4I log((p2l q4 1) / (p20 * q40))
+ p31 * q41 * og((p31 q41) / (p30 * q40))
+ p41 q41 log((p41 q4 1) /(p40 * q40));

i= a + b;
return(i);
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/*find the probabilities of quantized levels */ double P1 (u,l~t) double l,tu;
double i;
i = 0.5 * exp((-l) * (t - u));
retumn(i); )

double P2(ujl,t,d) double u,I,td;
double i;

i= I - 0.5 * exp((-I) * (u - t)) - 0.5 *exp((-l) *(t + d - u));
return(i);)

double P3(ujl,t) double l,tLu;
double i;
i= 0.5 * exp((-l) * (u - t)

rcturn(i); )

double P4(ujl,t) double l,tu;
double i;
i = 1 - 0.5 *exp( (41) * (u - t)

return(i);)

double P5(u,L~d) double ujl,t,d;
double i;

1 = - 0.5 *exp((-l) * (u - t)) + 0.5 *exp((-l) *(u - t - d)

return(i);

double P6(ujtd) double uj1td;
double i;

return(i);

double P7(ujl,t) double l,t,u;
double i;
i= I - 0.5 * xp( (41) * (t - u)

return(i);

/* find the value of Ul which involves prob p & q */ double Ul(dl,d2,k) double dl,d2; int k;(
double plIl,p2 l,p31l,p4 1;
double plO,p20,p30,p40;
double qlIl,q21l,q31,q4 1;
double q l0,q20,q30,q40;
double PlOP20,P30,P40,P50,P60,P70;
double UO;
double ulI I,ulIO,u21l,u20;
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double Li L2;
double tl,t2;
tI = TI;
t2 =T2;
ull =U1I;
U10= U10;
u2l = U21-,
u20 = U20;
Li = 11;
L2 = 12;

if ((tl+di) < ul 1 && (ti-di) >= ulO && (t2+d2) < u21 && (t2-d2) >= u20)

p41 = P4(ul ILl,tl+di);
p31 = PS(u I IL1ti,dl);
p21 = PS(u IIl,tl c-d Idl1);
p11I = P3(u I ILi,tldi1);
p40 = Pi(ulOL1,tl+dl);
p30 = P6(uiOLl,tildi);
p20 = P6(uiOLl,tl-dildl);
p10 = P7(ulOLI,ti-di);

q41 = P4(u2 1,L2,t2+d2);
q31 = P5(u21,L2,t2,dl2);
q21 = P5(u21,L2,t2-d2,d2);
qi 1 = P3(u21.L2,04-2);
q40 = Pl(u20.L2,t2+d2);
q30 = P6(u20.L2,t2,d2);
q20 = P6(u20,L2,t2-a2,d2);
qiO = P7(u20,L2,t2-d2);

return( U(p4I p31 'p21 ,p1 1,p40,p30.p2,piOq41,q3lI,q21 qI 11 q40,q30,q20,qiO,
k));

if((ti+dl)<ul I && (tl-di)>= ulO && (t2+d2)<u2l && (t2-d2).cu2O)

P41 = P4(u11,Ll,ti+di);
p31 = P5(u I IL ,tl,d1);
p21 = P5(ul ILi,tI -d1,d1);
p11I = P3(u11L1,t -d 1);
p40 = Pl(ulO.Ll,tl+di);
p30 = P6(ul10,LI,tl,dI);
p20 = P6(ulOLi,tl-d1,di);
p 10 = P7(u 10,1.l,tl -d 1);
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q4l = P4(u21,L2,t2+d2);
q31 = P5(u2l.L2.i2,d2);
q21 - P5(u21,L2,t2-d2,d2);
qI 1 = P3(u21,L2,t2-d2);
q40 = Pl(u20,L2,t2+d2);
q30 = P6(u20.L2,t2,d2);
q20 = P2(u20,L2,t2-d2,d2);
qlO = P3(u20,L2,t2-d2);
return( U(p41 'p3 l,p2l'p11 l,p40,p30,p20,plO,q4l1,q3 1 q21q ,l1,q40,q30,q20,q 10,

k));

if((tl+dl)<u11 && (LI-dl)>= ulO && (t2+d2)>=u21 && (t2-d2)>=u20)

p41 = P4(ul 1,Ll,tl+dl);
p31 = P5(ulILl,tl,dl);
p21 = P5(ulI ILI,tl A d 1);
p11I = P3(ul 1,L1,t1-dl);
p40 = Pl(ulOJ..,tl+dl);
p30 = P6(u10,Ll,tl,dl);
p20 = P6(ulOL,tl-dldl);
plO = P7(ulOLl,tl-dl);

q4l = Pl(u21,L2.t2id2);
q31 = P2(u21,L2,t2,d2);
q2l = P5(u21,L2,t2-d2,d2);
ql = P3(u21.L2,t2-d2);
q40 = Pl(u20,L2,t2+d2);
q30 = P6(u20,L2,t2,d2);
q20 = P6(u2,2,t2-d2,d2);
qlO = P7(u20,L2,t2-d2);
return( U(p4l1 p31 'p21,pl l,p40,p3Op2Op O.q41,q31,q21,q 11 q40,q30,q20,q 10,

k));

if((tl+dl)<ullI && (tl-dI)>= ulO && (t2+d2)>=u21 && (t2-d2) < u20)

p41 = P4(ull1,Ll,tl+dl);
p31 = P5(uII l,1tl,dl);
p21 = P5(uIIL jtlAdl,dl1);
p11I = P3(ulIll1,tl-dl);
p40 = PI(ulOLl,tl+dl);
p30 = P6(ulOL1,tl,dl);
p20 = P6(ulOL,tl-dl,dl);
plO = P7(ulOL,tl-dl);

q41 = PI(u21,L2,t2+d2);
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q31 = P2(u21,L2,t2,d2);
q2l = PS(u21 ,L2,t2-d2,d2);
qi 1 = P3(WLL2,04-2);
%t4O - Pl(u20,L2,t2+d2);
q30 = P6(u20,L2,t2.d2);
q20 = P2(u20,L2,t2-d2,d2);
qlO = P3(u20,L2,t2-d2);
retrn( U(p4 1,p3 1,p2l p11 ,p40,p30,p20,plOq4 I ,3 1,q2 1,qlI ,q40,q30,q20,q 10,

if ((z14.dl) < ul I && (ti-di) < ulO && (t2+d2) < u21 && (t2-d2) >= u20)

p41 = P4(u1 1,LI,tl+dl);
p31 = P5(ul 1,LI~tl,dl);
p21 = P5(ull1,Ll,tl-dl,dl);
p11I = P3(ul ,Lljtl-d1);
p40 = Pl(ulOLl,tl+dI);
p30 = P6(ulOLl,tldl);
p20 = P2(ulOL1,tl-dldl);
p10 = PS(ulOLl,tl-dl);

q4l = P4(u21,L2,t2+d2);
q3l = P5(u21,L2,t2,d2);
q2l = P5(u21,L2,t2-d2,d2);
qi 1 = P3(u2 I ,L2,t2-d2);
q40 = Pl(u20,L2,t2+d2);
q30 = P6(u20,L2,t2,d2);
q20 = P6(u20,L2,t-d2,d2);
qlO = P'7(u20,L2,t2-d2);

irturn( U(p4 I,p3 1,p21 ,pl 1 ,p40,p30,p20,plOq4lI,q3 1 q2 I ql 1 q40,q3,q20,q 10,

k))
if((tl+dl)<ul I && (tl-dl)< ulO && (t2.d2)<u21 && (t2-d2)<u20)

p41 = P4(uIIL l,,tl+dI);
p31 = P5(uIIL l,,tl,dl);
p21 = P5(ul ,L1,tl-dldl);
p11I = P3(ull1,Ll,tl-dl);
P40 = Pl(ulOLI,zl+dI);
p30 = P6(ulOLI~tl~dl);
p20 = P2(u IOLI.tl A d 1);
p10 = P3(ulOL1.tl-di);
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q4l = P4(u21,L2,t2+d2);
q3 2 = PS(u21 L2,t2,d2);
q21 =P5(u2L244~2,d2);
ql I = P3(u2 1,L2,12-d2);
040 = Pl(u20,L2,t2+d2);
q30 = P6(u20L2,t2,d2);
q20 = P2(u20,L2,t2-d2,d2);
qlO = P3(u20,L2,t2-d2);
returr( U(p4 l,p3 l,p2l ,pll ,p40,p30,p20,plO,q4l1,q3l1,q21 ,q1 1 q40,q30,q20,q 10,

if((tl+dl)<ul I && (ti-di) < ulO && (t2+d2)>-u2l && (t2-d2)>=u20)

p41 = P4(ul 1,LI,tl+dl);
p31 = PS(u I IL ,tl,dl);,
p21 = P5(ul 1,LI,tl-dIldl);
p11I = P3(ull1,LI,tl -dl);
p40 = P1(ulOLl,t1+dl);
p30 = P6(ulOL1,t1.dl);
p20 = P2(ulOLI.tl-dldl);
p10 = P3(ulOLl,tl-dl);

q41 = Pl(u21,L2,t+d2);
q3l = P2(u2lL2,t2,d2);
q21 = PS(u21,L2,12-d2,d2);
ql = P3(u21,L2,t2-d2);
q40 = Pl(u20,L2,t2+d2);
q30 = P6(u20L2,t2,dl2);
q20 = P6(u20,L2,t2-d2,d2);
qlO = P7(u20,L2,t2-d2);
return( U(p4 lp3 1,p2lpl 1 ,p40,p30,p20plOq4 1q3 1 q21q ,l1,q40,q30,q2,qlO,

k));

if((tl+dl)<ull && (ti-di) < ulO && (t2+d2)>=u21 && (t2-d2)<u20)

p41 = P4(ul ,L1,tl+dl);
p31 = P5(u11L1,zl,dl);
p21 = PS(uIIltl -d1Idd1);
p11I = P3(uILI,tl -dl1);
p40 = Pl(ulOLl,tl+dl);
p30 = P6(ulOLI,tl,dl);
p20 = P2(uIOLI,tl-dl,dl);
p10 = P3(ulOLI,tl-dl);

q41 = P1I(u21,L2,t2+d2);
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q31 = P2(u21,L2,t2,dl2);
q2l = P5(u21,L2,t2-d2,d2);
qi I = P3(u2 1,L2,t2-d2);
040 = Pl(u20,L2,t2+d2);
q30 = P6(u20,L2,t2,d2);
q20 = P2(u20,L2,t2-d2,d2);
q 10 = P3(u20,L2,z2.d2);
return( U(p4l1,p 31 'p21 'p11,p40,p30,p20,pl10q4lI,q3 1 q2l1,q 11 q40,q30,q20,q 10,

k));

if ((tl+dl) >= ul 1 && (ti-di) >= ulO && (t2+d2) < u2l && (t2-d2) >= u20)

p41 = PI(ul ,L1,tl+dl);
P31 = P2(u I ,L ,tl,dl);
p21 = P5(uIIL I,tlAd1,dl1);
p11I = P3(ul 1,Ll,tl-dl);
p40 = Pl(ulOLl,tl+dl);
p30 = P6(ulOL1,tI,di);
p20 = P6(ulOLl,tl-dl~dl);
p10 = P7(ulO.Ll,tl-dl);

Q41 = P4(u21,L2.t2+d2);
q3 1 = P5(u21I,L2,t2,d2);
q21 = P5(u21,L2,t2-d2,d2);
ql = P3(u21,L2,t2-d2);
q40 = PI(u20L2,t2+d2);
q30 = P6(u20,L2,t2,d2);
q20 = P6(u20,L2,t2-d2,d2);
qlO = P7(u20.L2,t2-d2);

retur( U(p41,p3 1,p21 ,pl I ,p40,p30,p20,plO,q4 1 q3lI,q2l1,qIl1,q40,q30,q20,qlO,

if((tl +dl1)>=u 11 && (tlI-Al)>= ul10 && (t2+d2)<u21 && (t2-d2).cu2O)

p41 = Pl(u1 1,L1,t1+('1);
p31 = P2(ullII. It,dl1);
p21 = P5(ul 1,LI,tl-dldl);
p11I = P3(uII l,,l A-,
p40 = PI (u I OL,tl+dI1);
p30 = P6(u I0,L ,tl,dl1);
p20 = P6(ulO.Ll,tl-dl,dl):,
p10 = P7(ulOLI,tl-dl);
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q4l = P4(u21,L2Zt2+d2).
q3l = P5(u21.L2,t2,d2);
q2l = P5(u21,L2,t2-d2,d2);
qi 1 = P3(u21.L2,t2-d2);
q40 = P 1(u20,L2,t2+d2);
q30 = P6(i2GL2,04,2);
q20O = P2(u20,L2,t2-d2,d2);
qlO = P3(u2,L2Zt2-d2);
return( U(p4 1 p3 l,p2l ,pl l,p40,p30,p20,plO,q4l1,q3l1,q21 ql I ,q40.q30,q20,qlO,

if((tl+dl),=ul 1 && (ti-di) >= ulO && (t2+d2)>=u2l && (t2-d2)>=u20)

p41 = P1(ul 1,L1,t1+dl);
p31 = P2(ullLl,tl,dl),
p21 = P5(u11,L1tl-d1,d1);
p11I = P3(ul ,Ll,tl-d1);
p40 = Pl(ulOLl,tl+dl);
p30 = P6(u10,L1,tldl);
p20 = P6(u10,Lld1,dl);
plO = P7(ulOLl,tl-dl);

q41 = Pl(u21,L2,t2+d2);
q3l = P2(u21,L2,t2,dl2);
q21 = P5(u21,L2,t2-d2,d2);
ql = P3(u21,L2-d2;
q40 = Pl(u20,L2,t2.d2);
q30 = P6(u20,L2,t2,c2);
q20 = P6(u20,L2,t2-d2,d2);
qlO = P7(u20,L2,t2-d2);
return( U(p4l1,p3 1,p2l'p11 l,p40,p30,p20,plO,q4lI,q3l1,q2 1 qlI ,q40,q30,q20,qlO.

k));

if((tl+dl1) >= ulI I && (tli-dl) >= ul10 && (t2+d2)>=u2l && (t2-d2)<u20)

p41 = Pl(ullL1,tl+dl);
p3 l = P2(ullL,tl,dl);
p21 = P5(uI l,1,l Adl,d 1);
p1 1 = P3(ullILl,tl-dl);
p40 = PI(uIOL1,tl+dl);
p30 = P6(ulOL1,tl,dl);
p20 = P6(u I O Ij I-dIJ,d 1);
plO = P7(ulOL1,tl-dl);

q4l = PlI(u21,L2,t2+d2);
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q3l = P2(u21.L2Adc2);
q2l = P5(u21,L2,t2-d2,d2);
qIlI = P3(u2 1,L2,t2-d2);
*q40 = Pl(u20L2.t2+d2).
q30 = P6(u20,L2,t2,d2);
q20 = P2(u20,L2,t2-d2,d2);
qlO = P3(u20,L2,t2-d2);
retun( U(p4 l,p3 1,p21 ,pll1,p40,p30,p20,plO,q4l1,q3l1,q21 ,qlI ,q40,q30,q20,qlO,

if ((tl+dl) >= ullI && (tl-di) < ulO && (t2+d2) < u21 && (t2-d2) >= u20)

p41 = Pl(ul 1,Ll,tl+dl);
p131 = P2(ulIIL ,tl,dl);
p21 = P5(ullLl,tl-dldl);
pl P3(ul 1,Ll,tl-dl);
p40 = P1(ulO.L1,tl+dl);
p30 = P6(uIOL1,tl,dl);
p20 = P2(ulOLl,tl-dld1):,
plO = P3(ulOLl,tl -dl);

q4l = P4(u21,L2,t2+d2);
q31 = P5(u21,L2,t2,d2);
q21 = P5(u21,L2,t2-d2,d2);
qlI = P3(u21,L2,t2-d2);
q40 = Pl(u20,L2,t2+d2);
q30 = P6(u20,L2,12,dl2);
q20 = P6(u20,L2,t2-d2,d2);
qlO = P7(u20,L2,t2-d2);

return( U(p41 'p3 l,p2l pl l,p40,p30,p20,plO,q4lI,q3l1,q2lq ,l1,q40.q30,q20,q 10,

if((t1+d1)>=ul I && (ti-di) < ulO && (t2+d2)<u2l && (t2-d2)<u20)

p41 = PI(u IU ,ll+d1);
p31 = P2(ul Ll,tl,dl);,
p21 = P5(u I IL1,tl A d 1d);
p11 = P3(u1I1IL Ij I-d 1);
P40 = Pl(uIOLl,tl+dI);
p30 = P6(ulOLI,tl,dl);
p20 = P2(ulOLI,ti-dl,dl);
p10 = P3(ulOLI,zl-dl);
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q41 = P4(u21,L2.t2+d2);
q3l = P5(u21,L2,t2,d2);
q21 = P5(u21 L2,t2-d2,d2);
ql = P3(u21,L2,t2-d2);
q40 = Pl(u20L2,t2+d2);
q30 = P6(u20,L2,t2,d2);
q20 = P2(u20,L2,t2-d2,d2);
qlO = P3(u20.L2,t2-d2);
retur( U(p4 1,p3 1,p21 .pll p40,p30,p20,plOq4l1,q3 1 ,21,q ql1 q40q30,q20,q10,

k));

if((tl+dl)>=ul I && (ti-dl) < ulO && (t2+d2)>=u21 && (t2-d2)>=u20)

p41 = P1(ul Ll,tl+dl);
p31 = P2(ul IL1l,tl,d1);
p2! = P'5(ulI 1,Ll,l-dldl);
p1!I = P3(ul 1,L1,tl-dl);
p40 = Pl(ulOLl,tl+dl);
p30 = P6(ulOLl,tl,dl);
p20 = P2(ulOLl,tl-dI,dl);
p10 = P3(ulOLl,tl-dl);

q41 = P1(u21.L2,t2+d2);
q3l = P2(u21,L2,t2,d2);
q2l = P5(u21.L2,t-d2,d2);
q I 1 = P3(u2 ,L2,.2-d2);
q40 = Pl(u20,L2.t2+d2);
q30 = P6(u20,L2,t2,d2);
q20 = P6(u20,L2,t2-&2,d2);
qlO = P7(u20,L2,t2-d2);
return( U(p4lI,p3 l,p 2l ~pl 1,p40,p30,p20,plOq4l1,q3lI,q21 qlI q40,q30,q20,qlO,

k));

if((tl+dl) >= ul I && (t1-dl) < ulO && (t2+d2)>=u21 && (t2-d2)<u20)

p41 = P5(ull1,Ll,tI-ddl);
p31I = P2(ul 1,LI,tl-dl);
p21 = Pl(ulOl,Itl-ddl)

p30 = P6(ulOLI,tl,dl);
p20 = P2(ulO.Ll,tl-dldl);
p10 = P3(ulO.L1,tl-dl);

q41 = P I(u2 1,L2,t2+d2);
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q31 = P2(u21,L2,t2,d2);
q21 = P5(u21,L2,t2-d2,d2);
qIl = P3(u21,L2,t2-d2);

q40 = P1(u20,L2,t2+d2);
q30 = P6(u20,.2,t2,d2);
q20 = P2(u20,L2,t2-d2,d2);
qlO - P3(u20,L2,t2-d2);

return( U(p41,p3 1,p21 ,pl 1,p40,p30.p20,p 10,q41 ,q31 ,q21 ,q 1 ,q40,q30,q20,q 10,
k));

]]

/*calculate constants in the G function */double Cons 10 {

double ab;
double AB;
double i;
A = (beta) / (I - alpha);
B = (1 - beta)/alpha;
a = log(A);
b = log(B);
i = (a * A* (B - 1) +b* B* (1 - A)) (B - A);
return(i);)

double ConsO0 {
double a,b;
double AB;

double i;
A = (beta) / (1 - alpha);
B = (I - beta) / alpha;

a = log(A);
b = log(B);
i = (a * (B - 1) + b * (1 - A)) (B- A);
return(i); )

97



APPENDIX C

Program for Evaluation of G Function of Two-level Quantizer System

This program is to generate double exponential random environment, and it is
then be used to simulate the sequential detection system with two and four level
quantization. The number of data that have to be collected to determine which signal
has been received is calculated. This program makes comperison between 2 and 4
level quatizers.

Since these two sensors are independent, the random generator is started twice
in order to make the environment of sensor one independent from the one of sensor
two.
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#define RND(seed) rand(seed) / 32767. #define RND(weed) rand(weed) / 32767.
#define max 500 #include <math.h> #include <stdio.h> int rando; void srando;
unsigned int seed; unsigned mnt weed;

maino
float yl,y 2;
float lamda,lamdal;
float uO,ul,UO,U];
float al 1,a12,al,a02; 1* quantized areas for 2 level quantizer ~
float arl 1,arl2,arl3,arl4,ar~l,aO2,arO3,arO4; 1* quantized areas for 4 level*/
float A1I1,A 12,AO 1,A02;
float Arl 1 ,Arl2,Arl 3,Arl4,ArOl ,ArO2,ArO3,ArO4;
float tl,t2;
float Tl,T2,Deltal, Delta2;
float fi1, fO;
float Fl, FO;
float ff 1, ff0;
float FF1I, FF0;
float A,B;
float miss 1,miss2;
float testl,test2;
float anrivl10, arriv2();
float Arealo, Area2(),Area3(), Area4(), AreaSO), Area6(), Area7O;
float alpha, beta;
int ij,k,m,n;
int okl, ok2;
mnt NlI~max+1];
int N2[ma'c+ 1];
FILE *fpl, *fp2, *fp3, *fp4;

1* initial the random number for sensor 1 /
seed = time(&seed);
srand(se.-d); /*Given the constants of double exponential function*/
lamda =0.25;
lanidalI = 0. 125;
uO =-3.0;
ul. = 3.0;
UO =-5.0;
131 = 5.0; /*define the optimal quantizers of for sensor I and 2 ~
tI = 0.0;
t2 = 0.0;
Ti = 0.0;
T2 = 0.0;
Delta 1 = 2.0;
Delta2 = 3.3;
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alpha = 0.05;
beta = 0.01; /*alculate the threshold of sequential test*/
A=betal( 1 -alpha);
B = 1 - beta, / alpha;

fpl fopnQ'umlfg4',w")
fp2 = fopen("num~fig4", W");

fp3 = foe(ms1 i4,w)
fp4 =fopen("mis2fig4","w"); /*find the probabilities of each quantized level for a

given *11P quantizer *
all =Area2(lamda,ul,tl);

a12 =Area3(lamda,ul,tl);

aOl =Area4(lamda,uO,tl);

a02 = Areal (lamda,uO,tl);
All1 = Area2(lamdal,U 1,C);
A12 = Area3(lanidal,Ul,t2);
AOl = Area4(lamdal,UO,t2);
A02 = Areal (lamdal,UO,t2);
if (( T1 +Deltal) >= ul1

ar 11 = Area2(lamda,u 1,T I-Delta 1);
ar12 = Area5(lamda,ul,Tl-DeltalTl);
arl3 = Area7(lamda,ulTl,Deltal+Tl);
ar14 = Areal (amda,ulTl+Deltal);
arOl = Area2(lamda,uOTl-Deltal);
arO2 = Area7(lamda,uOTl-DelalT1);
arO3 = Area6(landa,uOTl,Tl+Deltal);
arO4 = ArealI(lamdauOT 1+Delta 1);

if ((TI + Deltal ) <ul)

ar 1 = Area2Qlamda,u I,Tl -Delta 1);
ar12 = Area5 (lamda,u LT I-DeltalIT 1);
ar13 = Area5(lamda,u 1 Tl,Deltal+Tl);
ar14 = Area3(lamda,ul1,T1 +Deltal1);
arOl = Area4(lamda,uOTl -Delta 1);
arO2 = Area6(lamda,uO,T-DeltalTl);
ar03 = Area6(lamda,uO,T I,Tl +Deltal1);
arO4 = Area I(Iamda,uOT-I +Deltal1);

if( (T2 + Delta2) >= Ul)

Arl I = Area2(laida 1,U 1,T2-Delta2);
Ar12 = Area5(lanidal,Ul,T2-Delta2,T2);
Ar1 3 = Area7(lamdal1,U 1,T2,T2+Delta2);
Ar14 = Areal (lamdal,U1,T2+T)elta2);
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ArOl = Area2(lamdalUO,T2-Delta2);
ArO2 = Area7QlamdalUOT2-Delta2,T2);
ArO3 = Area6(IamdalUOTT+Delta2);
ArO4 = Areal1 (lamdal UO,T2+Delta2);

if( (T + Delta2) <UlI

Arl I = Area2(IamdalU1,T2-Delta2);
Ar12 = Area5(lamdal Mi T2-Delta2,T2);
AMl = Area5(lamdal U 1 T2,T2+Delta2);
Ar14 = Area3(lamdalU1T2+Delta2);
ArOl = Area4(lamdalUO,T2-Delta2);
ArO2 = Area6QlamdalUO.T2-Delta2,Th);
ArO3 = Area6(lanxlalUOT2,T2+Delta2);
ArO4 = Areal~lamdalUO,T2+Delta2);
) /* initial the random number for sensor 2 *

weed = uime(&weed);
Srand(weed);

n=01

for(i=1I; i<-- max; i++)

okI = 0-
ok2 =0-
testi = 1.0;,
test2 = 1.0;,
while((okl = 0) 11 (ok2 =0))

(
yl = arrivlolamdaul);
y2 = arriv2QlamdalUl);

1* calculate the number of collected data fr-om two-level quantizer ~
if(okl ==0)

iftylI >--tlI)

fi = a12;
fO = a2;

else if (yl <--tl)



fl = all;
fO = aOl;}

if(y2 >= t2)
{
F1 = A12:
FO = A02;

)
else if (y2<= t2)
{
F1 = All;
FO = AO;}

test1 = ((fi * F1) / (f0 * FO))*testl;
if((testl >= B) II (testl <= A))
okl = 1;

if(testl <= A)
I{M++;

j++;

1I* calculate the number of collected data from four-level quantizer *1
if(ok2 =-- 0)
{
if(yl < TI - Deltal)
I
ffl arl1;
ff0 = ar01;

}
if(yl >= (T1 - Deltal) && yl < TI)
{
ff1 = arl2;
ff0 = ar02;

}
if(yl >= TI && yl < (TI + Deltal))
{
ffl = arl3;
ff0 = a103;}

if(yl >= (T1 + Deltal))
I

ff1 = arl4;
ff0 = ar04;

if(y2 < (T2 - Delta2))
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FF1 = Ar.1;
FF0 = ArO 1;

if(y2 >= (T2 - Delta2) && y2 < T2)

IF r2
FF1 = Arl2;

FF0 = ArO2;

if(y2 >= (T2 &&y 12+ Delta2))

FF1 = Arl4;
FF0 = ArO4;

if(yt2 >= )11 Det2 <))

FF1 = 1r;

if(test2 <= A)

N1[i] =j;
N2[i = k;
fprintf(fpl1,"%d %dO,i,N 1 [i]);
fprintf(fp2,"%d %dO,i,N2[i]);

Icoe~p)
fclose(fp 1);
fclose(fp2);

fclose(fp4); / * generate the enviornment HI for sensor 1I* float arrivIl(, u)
float 1, u;

float z,r;
int k,y;
double x;

x = RND(seed);
if (x < 0.5 && x >0.0)
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y = 1;
z = u + (y * log(2 * x))/ 1;
return(z);

)
else if ( x >= 0.5 && x < 1.0)
y

z=u+(y* log (2* (1 -x)))/1;
return(z);

) )/* generate the enviornment HI for sensor 2 */float arriv2(l, u ) float 1, u;

[
float z,r,
int k,y;
double x;

x = RND(weed);
if (x < 0.5 && x > 0.0)
f
y = 1;
z = u + (y * log(2 * x)) /1;
retum(z);

else if (x >= 0.5 && x < 1.0)(

z u + y * (log (2 *(1-x)))/1;
return(z);

/* calculate the probabilies of different quantized region for *//* two and four-level
quantizer *1

float Areal(l,u,x) float l,u,x; {
return(0.5 * exp(-I * (x - u)));.} float Area2(1,u,x) float l,u,x; (
retum(0.5 * exp(-l * (u - x))); } float Area3(1,u,x) float l,u,x; (
return(1 - 0.5 * exp(-l * (u - x))); ) float Area4(l,ux) float l,ux; (
return(1 - 0.5 * exp(-1 * (x - u))); ) float Area5(l,u,x,y) float l,u,x,y; (
return(0.5 * exp(-I * (u - y)) - 0.5 * exp(-l * (u - x))); ) float Area6(1,u,x,y) float

1,u,x,y; (
retum(0.5 * exp(-l * (x - u)) - 0.5 * exp(-I * (y - u))); ) float Area7(l,u,x,y) float

l,u,x,y; (
return(1 - 0.5 * exp(-l * (u - x)) - 0.5 * exp(-l * (y - u))); )
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OF
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Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air
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